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Predictive simulation of material failure 
using peridynamics-advanced constitutive 

modeling, verification, and validation

John T. Foster and James O’Grady

March 31, 2016

Abstract
Peridynamics is a nonlocal formulation of continuum mechanics in which forces
are calculated as integral functions of displacement fields rather than spatial deriva-
tives. The peridynamic model has major advantages over classical continuum
mechanics when displacements are discontinuous, such as in the case of mate-
rial failure. While multiple peridynamic material models capture the behavior of
solid materials, not all structures are conveniently analyzed as solids. Finite Ele-
ment Analysis often uses 1D and 2D elements to model thin features that would
otherwise require a great number of 3D elements, but peridynamic thin features
remain underdeveloped despite great interest in the engineering community. This
work develops nonordinary state-based peridynamic models for the simulation of
thin features. Beginning from an example nonordinary state-based model, lower
dimensional peridynamic models of plates, beams, and shells are developed and
validated against classical models. These peridynamic models are extended to
incorporate brittle and plastic material failure, compounding the peridynamic ad-
vantages of discontinuity handling with the computational simplicity of reduced-
dimension features. These models will allow peridynamic modeling of complex
structures such as aircraft skin that may experience damage from internal forces
or external impacts.

1
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Chapter 1: INTRODUCTION

The final goal of many mechanical engineering analyses is the prediction and description of ma-

terial failure. Even when some amount of material failure is acceptable, conservative engineering

models can indicate safe conditions by which failure may be avoided. Within these operation

envelopes, a wide variety of well-developed analysis techniques are available to predict mate-

rial behavior. Outside the envelope, the onset of failure may be predicted and replacement/repair

indicated, but the actual progression of material failure is unknown. Because these envelopes con-

servatively restrict operation, absolute avoidance of material failure may require tradeoffs such

as: reduced operational life, expensive inspection and repair regimes, increased down-time, and

reduced performance in other areas. Material models that accurately predict failure progression

can extend the operational envelope without reducing reliability. Other problems, such as those

related to impact, penetration, and blast resistance, necessarily involve material failure and cannot

be accurately modeled without simulating failure progression. Without reliable means for model-

ing failure progression, these problems can be tackled only by means of extensive (and expensive)

testing programs. While some extrapolation from test results is possible, many conditions of inter-

est are difficult, expensive, and/or dangerous to create and to observe. For these reasons, accurate

and reliable models for the progression of failure for various materials and conditions has long

been and remains a major focus of engineering research.

1.1 Scope

This dissertation presents a nonlocal equivalent to an Euler-Bernoulli beam, along with a method-

ology for representing non-uniform cross-sections, plastic behavior, and failure. Unlike many con-

tinuum beam theories that derive new equations of motion (such as fourth order PDE’s) from the

three-dimensional elastic constitutive model, or even introduce new equations of motion without

reference to any solid constitutive model, the new model is not derived from prior ordinary peridy-

namic models based on bond extension, but is a material model that directly resists bending defor-

1
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mation while maintaining the same conservation of momentum equation as the three-dimensional

model. In other words, bending is a fundamental mode of deformation to this model, which resists

it at the constitutive level. This beam model is demonstrated to be equivalent to Eringen’s nonlocal

elasticity for small peridynamic horizons.

The one-dimensional beam model is then extended to two dimensions to model the bending

behavior of flat Kirchhoff-Love plates. The resulting 1-parameter model is constrained to a Poisson

ratio ⌫ =

1
/3. By introducing an isotropic bending-state, the model is extended to any valid

Poisson ratio. The model is combined with an extension-based model to capture the effect of in-

plane forces on bending behavior, resulting in a flat shell model that is easily discretized to model

simple shapes. Introducing the concept of virtual points results in a discretized model that is more

practically applicable and able to model non-uniform distributions of peridynamic points, as might

result from a meshing software. Using virtual points also allows the simulation of curved shells,

greatly expanding the class of problems that can be approached with this model. Because many

analyses of interest are partly or wholly comprised of these types of features, their development is

an important addition to the capabilities of peridynamic analysis.

1.2 Outline

Chapter 2 of this dissertation reviews the literature for material modeling, focussing on the most

prominent PDE-based material failure modeling techniques, alternative nonlocal models, peri-

dynamics, and thin feature modeling. Chapter 3 gives a short background on Euler beams and

Kirchhoff plates. Chapter 4 provides necessary background information on peridynamic models.

Chapter 5 develops the new bond-pair and bond-multiple peridynamic bending models. Chap-

ter 6 translates the continuum model into a useful discrete form and extends that discrete model to

handle curved and irregular shapes. The results of these discrete models are compared to analyt-

ical and classical solutions for simple models in section 6.6. Conclusions and avenues for future

development are laid out in chapter 7.

2
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Chapter 2: LITERATURE REVIEW

2.1 PDE-Based Failure Modeling

Because material failure is an important part of many problems, there are several computational

methods that attempt to simulate progressing material failure. Most of these methods start with

the partial differential equations for conservation of momentum found in classical continuum me-

chanics, then extend those models to account for failure situations that are poorly modeled by the

classical equations.

One of the most popular is the eXtended Finite Element Method (XFEM), an excellent overview

of which can be found in [28] by Fries and Belytschko. Traditional finite elements use polynomial

basis functions to describe unknown fields over an element. As a result, fields such as displace-

ment always vary continuously across an element; discontinuities within an element are poorly

approximated even by high-order polynomials. When they are allowed at all, discontinuities can

only arise between elements, and are therefore very mesh-dependent; worse, to model a moving or

evolving discontinuity requires continual remeshing around the advancing crack tip, adding greatly

to the computational complexity of the problem. The finite elements in an XFEM model are “ex-

tended” or enriched by adding basis functions that are discontinuous or that are continuous but

have discontinuous derivatives. In the case of crack growth, this extension comes in the form of

discontinuous basis functions that reflect the discontinuous displacement field at a crack. In 1982,

Arnold [2] developed a mathematical basis for using discontinuous finite elements and an interior

penalty method. This method allows modeling problems with very high gradients (as at bound-

aries) and greatly reduces the importance of meshing and the need for remeshing. While initially

demonstrated for high-gradient heat and fluid flow problems, the method of adding discontinuities

within an element had strong potential for failure problems resulting in discontinuous displace-

ments. Instead of remeshing along an expected crack path, a process that would require continual

remeshing, the predicted direction of crack growth is used to choose discontinuous basis functions
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consistent with a crack along that path.

The use of discontinuous basis functions (such as fig. 2.1) to model crack progression through

an element was first developed by Belytschko and Black in [6] to model straight and gently curving

cracks with less remeshing. The discontinuous function in fig. 2.1 will look familiar. As the

transverse displacement field around the tip of a Mode I crack,

v(x, y) =

K

I

2µ

r
r

2µ

cos

✓
✓

2

◆
 � 1 + 2 sin

2

✓
✓

2

◆�
, (2.1)

eq. (2.1) and the other crack-tip displacement fields are a natural choice of basis functions. Longer

cracks would require remeshing, but at the root of the crack rather than the tip. Root remeshing

represents a major improvement over tip remeshing because it needs to be performed far less fre-

quently. Additionally, the path of the advancing crack can travel at any angle rather than following

the angle of a mesh edge. The practice was then extended by Moës et al. in [49] to use different

Figure 2.1: XFEM includes discontinuous enrichment basis functions

discontinuous basis functions for cracks and crack tips. Adding a Haar function to model dis-

continuous displacements far from the crack tip allowed cracks to pass through several elements,

enabling the modeling of cracks with greater length and curvature without remeshing.
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As with traditional finite element methods, XFEM is mesh-based and uses traditional finite

element basis functions. The elements are enriched extrinsically by adding discontinuous basis

functions to the existing basis functions using the Partition of Unity concept described by Melenk

and Babǔska in [44]. The enrichment functions can capture arbitrary discontinuities in both the pa-

rameter being modeled and in its gradient, but the location of the discontinuities must be predicted

so that the appropriate enrichment functions can be used. In [49], crack direction was predicted

by locating the maximum circumferential stress. There are other options for predicting a crack’s

direction of travel, but they do not generally predict the formation of a crack where none existed

before. Elements are enriched locally as illustrated in fig. 2.2 rather than globally, to capture local

phenomena like crack growth. In some elements, every node is enriched, while in others, only

some nodes are enriched. Some choices of enrichment functions cause difficulties in the partially

enriched “blending” elements, a problem for which a variety of fixes are available depending on

the situation.272 T.-P. FRIES AND T. BELYTSCHKO

:
:

nodal set I
nodal set I

φ,γ

tip

r

crack crack

(a) (b)

Figure 10. Enriched nodal sets for open interfaces (e.g. cracks and dislocations). Near the interface
front (crack tip or dislocation core), different enrichments are used at the nodes in I ⋆

tip than along
the interface at the nodes in I ⋆

!,".

particularly important topic in the XFEM as most applications of this method so far have been
realized in this field and they are of great engineering relevance.

In contrast to the situation described in Section 5.1 for strong and weak discontinuities at closed
interfaces—where the step and abs-enrichment apply for a large number of applications—the
enrichment functions employed at interface tips/fronts depend on the particular physical model
under consideration. Therefore, in the following the enrichment functions are discussed with respect
to particular applications.

5.2.1. Enriched nodes. Two sets of nodes are defined that are enriched differently. The enrichments
for the high gradients at the interface tip/front are realized at the nodes in

I ⋆
tip={x :∥x−x⋆

tip∥�r}, (26)

where x⋆
tip is the interface tip in two dimensions or the nearest point on the interface front in

three dimensions and r ∈R is a prescribed radius [93, 115], see Figure 10(a). Rather than using
this geometric criterion, it is sometimes useful to enrich only the element nodes of the elements
containing the interface tip/front [14], see Figure 10(b). Assume that these elements are given in
the set M, then

I ⋆
tip= ⋃

k∈M
I elk . (27)

Nodes along the interface are enriched differently and are in

I ⋆
!," =

{
⋃

k∈N!,"

I elk

}∖
I ⋆
tip, (28)

where N!," is the set of elements that are completely cut by the open interface,

N!," =
{

k∈{1, . . . ,nel} :min
i∈I elk

(!(xi )) ·max
i∈I elk

(!(xi ))<0 and max
i∈I elk

("(xi ))<0

}

. (29)

The two level set functions !(x) and "(x) define the open interface as discussed in Section 3.2.
A graphical representation of the two nodal sets I ⋆

tip and I ⋆
!," is given in Figure 10.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 84:253–304
DOI: 10.1002/nme

Figure 2.2: XFEM models enrich nodes around a discontinuity [28]

More recently, Sauerland and Fries applied XFEM to two phase flow problems [62], including

standard dam-breaking and rising droplet problems. Holl et al. [32] used XFEM in the multi

scale modeling of crack propagation, including multiple interacting cracks. Mohammadnejad and

Khoei [50] and Hunsweck et al. [33] modeled using XFEM the combination of fluid and fracture

behavior found in hydraulic fracturing, a topic of considerable recent interest.

A second common method of modeling material failure is the Reproducing Kernel Particle

Method (RKPM), developed by Liu et al. [40]. Mesh-based models track the connections between
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points in a deforming material, which can become problematic when large deformations deform the

mesh and even cause it to intersect itself. RKPM is a “mesh-free” method that tracks material prop-

erties by their values at selected points. Mesh-free methods are advantageous for modeling large

deformation in fluids and solids because they do not track connections between points. Between

material points, properties are interpolated from their values at nearby points by way of integra-

tion with a kernel function. The difference in domains between RKPM and XFEM can be seen in

fig. 2.3. The key to the RKPM lies in this kernel function; by using window functions from wavelet

By substituting Eq. (2) and (4) into Eq. (7), the coefficient vector
bðxÞ is obtained as

bðxÞ ¼ M$1ðxÞHð0Þ (8)

where

MðxÞ ¼
PNP

J¼1
H
!
x$ xJ

"
HT!x$ xJ

"
4a

!
x$ xJ

"

HTð0Þ ¼ ½1 0 0 0 0 . 0 &
(9)

Finally, the RK shape function is obtained as

JIðxÞ ¼ HT ð0ÞM$1ðxÞHðx$ xIÞ4aðx$ xIÞ ð10Þ

Fig. 1 shows the contour plot of a two-dimensional RK shape
function with rectangular support. The kernel support is shown
on the left, thus defining the domain of influence, and the shape
function is shown on the right, constructed using a cubic B-spline
kernel function and linear bases. Fig. 2 shows the comparison of
RKPM discretization with circular support and a FEM triangular
mesh using the same set of points. The domain of influence of each
FEM node is determined by the neighboring connected elements,
whereas the domain of influence of the RK shape function is
defined by the support of the kernel function. While in RKPM
discretization some domains of influence are extended outside of
the physical boundary, the reproducing conditions enforced in Eq.
(6) guarantee the order of accuracy for all x˛U. This extended
boundary layer in RKPM needs to be considered in contact
problems. However, it serves as an “insulation layer” to ensure
impenetration conditions in the normal contact similar to the
function of a “gap element” in the finite element setting. More
details will be discussed in the kernel contact algorithms in
Section 4.

3. Semi-Lagrangian reproducing kernel discretization

3.1. Governing equations

For modeling of fragment-impact processes, we introduce
a semi-Lagrangian RK discretization to the equation of motion. We
start with an updated Lagrangian formulation where the current
configuration is the referenced configuration, and introduce
a semi-Lagrangian RK approximation constructed in the current
configuration to the updated Lagrangian variational equation. Let X
be the material coordinate representing the initial position of
a material point, and x be the current position of the material point
X in the current configuration with domain Ux, essential boundary
vUg

x , and natural boundary vUh
x . The weak form of the equation of

motion is
Z

Ux

duir€uidUþ
Z

Ux

duði;jÞsijdU ¼
Z

Ux

duibidUþ
Z

vUh
x

duihidG

(11)

where ui is the displacement, sij is the Cauchy stress,
uði;jÞ ¼ ðvui=vxj þ vuj=vxiÞ=2, and r, bi and hi are density, body force
and surface traction in the current configuration, respectively. In
the pure Lagrangian RKPM formulation, the Lagrangian RK shape
functions, JIðXÞ, are constructed using the material coordinates in
the initial configuration. The discretization of Eq. (11) by the
Lagrangian RK approximation requires taking the spatial deriva-
tives of the Lagrangian RK shape function,JIðXÞ, which is obtained
by the chain rule as

vJIðXÞ
vxi

¼
vJIðXÞ
vXj

vXj

vxi
¼

vJIðXÞ
vXj

F$1
ji (12)

Fig. 2. Comparison of FEM and RKPM discretization and domains of influence: (a) FEM Discretization and (b) RKPM Discretization. The domain of influence of one node is marked in
grey color as an example.

a b c

Fig. 3. Comparison of Lagrangian and semi-Lagrangian kernel supports in undeformed and deformed configurations: (a) undeformed configuration, (b) Lagrangian kernel deformed
with the material in the deformed configuration, and (c) semi-Lagrangian kernel in the deformed configuration.

P.C. Guan et al. / International Journal of Impact Engineering 38 (2011) 1033e1047 1035

Figure 2.3: Comparison of domains of influence for a)FEM and b)RKPM, by Guan et al. [31]

analysis, a “reproducing” kernel guarantees that integrals of interpolated properties reproduce the

integral of the continuous property field. The “reproducing” kernel makes the RKPM a Partition of

Unity method like XFEM, and is a major advantage of RKPM relative to other particle methods.

It is computationally expensive to perform the necessary shape-function integration, however. The

integration is typically performed on a background grid, raising concern over whether it is truly

“mesh-free”.

In its original formulation, the RKPM successfully handles large deformations that would cause

unacceptable distortion in Finite Element models. A semi-Lagrangian version implemented by

Guan et al. in [30] allows for recalculation of the support function. This allows damage in the form

of severing the relationship between points that have been pulled too far apart. Recent applications

of the RKPM include the work of Guan et al. on fragment-impact problems [31] and analysis of

non-linear wave equations by Cheng and Kim Meow [13]. The RKPM has also been used by Xie
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and Wang [82] to analyze coupled hydro-mechanical behavior. Wu et al. have coupled RKPM and

FEM in their recent work on fragmentation and debris evolution [81].

Other methods of modeling failure include multiple finite element techniques and particle

methods. Finite element methods incorporating “element death” remove from consideration el-

ements that meet particular criteria and are perhaps the simplest way of modeling material failure.

Cohesive zone elements, proposed by Ortiz et al. [56], use element level information to detect

the onset of plasticity (material instability) and add suitable deformation modes to model shear

banding. The additional deformation modes allow cohesive zone elements to capture the more

complex displacements associated with plastic shear bands. Other cohesive zone elements devel-

oped by Needleman [53] model crack growth, but Foulk et al. [27] note that this requires very

fine meshes or prior knowledge of the crack path. They are useful for cases such as composite

delamination or debonding, where the crack follows a known surface. Fang et al. propose in [23]

a method of augmenting the cohesive zone model to work in concert with XFEM-type elements

to model both arbitrary and known crack paths. More recently, McGarry et al. [43] and Máirtín

et al. [41] developed a cohesive zone model to account for crack closure, including crack surface

tractions.

Particle methods of modeling failure include the Smooth Particle Hydrodynamic (SPH) method,

reviewed by Monaghan in [51], in which a kernel (commonly a cubic spline) is used to create a

smooth interpolation of actual quantities. Unlike the wavelet basis functions of RKPM, which

can be made to reproduce a polynomial field of any order, cubic splines only perfectly reproduce

constant fields. Developed for fluids, Springel notes in [71] that it is often used in astrophysics

problems, where many fluid problems are encountered and even “solid" bodies deform under their

own gravity. It can also predict elastic behavior and has been extended with failure models by

Benz and Asphaug in [7] by adding an evolving damage parameter. Particle methods like SPH

handle fragmentation very well, and are used in a variety of problems with material interfaces,

high strains, and multiphase and multi-physics aspects. Because cubic spline kernels do not re-

produce a Partition of Unity, property interpolation does not accurately reproduce the continuum
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field. Additionally, elastic SPH models do not conserve angular momentum, and in cases require

artificial viscosities or artificial stresses to avoid numerical instability.

The Material Point Method, developed by Sulsky and Schreyer in [72], tracks points in both

Eulerian and Lagrangian meshes. The advantage of using both meshes is an ability to handle

obstacles and boundary conditions without difficulty at large deformations. Wieckowski notes

that the downside to using both meshes is continual remeshing and added computational expense

[80]. Despite this expense, the material point method was extended to model cracks by Nairn

in [52], then further enhanced by Sadeghirad et al. in [60] to improve stability when modeling

massive deformations. The Lattice Discrete Particle Method was developed by Cusatis et al. [14,

15] to model concrete. Unlike perviously mentioned particle methods, the particles in LDPM

represent actual particles of aggregate and the cement between them, with volume as well as mass.

It fills a volume with variously-sized particles generated from a probability density function based

on aggregate size. The relationships between these particles form tetrahedrons (the lattice) that

fill the volume and allow multi-particle interaction. As with finite element models, displacement

between particle centers is linearized to compute strains, stresses, and forces. Failure occurs at

predefined surfaces between particles and can include various failure modes. The LDPM is capable

of accurately modeling many failure conditions in concrete, including the impact of specimen size

on effective material behavior. These are only a few of the myriad of models that attempt to model

the progression of material failure.

All of these methods are used to solve a partial differential equation for conservation of mo-

mentum in a continuum. Because they are based on continuum PDEs, they do not naturally develop

discontinuous displacements such as cracks. The PDEs that govern these methods are ill-defined at

the surface of a crack, so cracks must be inserted within or between elements after discretization.

This results in crack propagation that is discretization-dependent as well as computationally ex-

pensive and potentially unstable. Although progress in addressing these issues continues, much of

the difficulty is essentially tied to the undefined nature of derivative equations at discontinuous dis-

placements. By abandoning the use of displacement derivatives, peridynamics offers an alternative
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way to address discontinuous displacements.

2.2 Peridynamic Modeling

The term peridynamic was coined by Silling to describe the new formulation of continuum me-

chanics he developed in [64]. From the Greek roots peri and dyna meaning near and force re-

spectively, it alludes to the nonlocal force exerted by nearby points. In contrast to the nonlocal

continuum mechanics models of Kröner, Eringen and Edelen [21, 22, 36], which formulate behav-

ior as an integral function of strain (itself a spatial derivative of displacement), the peridynamic

model casts material behavior at a point as an integral equation of the surrounding displacement

rather than the classical differential equation. Because peridynamic models do not include spa-

tial displacement derivatives, discontinuous displacements can arise naturally and can be analyzed

without first discretizing the problem or applying special heuristics. In classical continuum me-

chanics, linear momentum is conserved according to the local eq. (2.2),

⇢(x)

¨

u(x) = r · P(x) + b(x) , (2.2)

in which ⇢ is the density, ¨u is the second time derivative of displacement , P is the transpose of

the First Piola Kirchhoff stress tensor, and b is the body force density, all of which are functions

of position x and of time. Because P is defined in terms of the deformation gradient, it is clear

that eq. (2.2) is undefined for discontinuous displacements. In fact, traditional models require even

the first spatial derivative of displacement to be continuous. Strongly nonlocal models (including

peridynamics) replace the divergence-of-stress term with an integral functional,

⇢(x)

¨

u(x) =

Z

⌦

f(x,q)dVq + b(x) , (2.3)

so that, instead of the divergence of stress, we have the integral of a “force" function f of the

position vector x and the position vector q of a point within the body domain ⌦. This force
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function may depend on x, q, their deformed positions, the original and deformed positions of

other points in ⌦, history, etc. It is common for f to be defined as 0 for any pair of points initially

further than � apart. The points within � of a point x are the neighborhood of x and are denoted

in fig. 2.4 by H. By including the behavior of nearby material, these models introduce an inherent

�

x

q

H

⌦

Figure 2.4: A peridynamic body ⌦

length scale to the model. This length scale is theoretically determined by material properties,

though choice of length scale is sometimes limited by computational demands.

Constitutive modeling of a wide variety of materials is accomplished by choosing the appro-

priate form for the force function. The form of the simplest such function is a peridynamic “bond”

between two points that is modeled by a pairwise force function. While the simplest force func-

tions recreate a one-parameter linear elastic solid material, other force functions can be used to

model a wide variety of material behaviors, some of which will be outlined here. Most simulation

of material behavior uses an equation of motion reformulated for a discretized model. The typical

discretization is a mesh-free numerical method in which there are no geometrical connectivities

between various nodes.

A force function can be restricted to being pairwise (depending solely on the displacement

of the two points x and q), and still model complex and varied behavior. By including a dam-

age parameter that sets the force contribution of “damaged” bonds to 0, Silling and Askari [68]

were able to model a brittle material with natural crack formation, propagation, and branching.

Other examples of damage propagation include impacts against brittle structures as in fig. 2.5

modeled by Demmie and Silling [17] and fracturing of thermally-stressed glass modeled by Kilic
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and Madenci [35]. Modeling progressive fracture, including crack branching, is a major advantage1934 PAUL N. DEMMIE AND STEWART A. SILLING

0 s 0.17 s 0.64 s

Figure 10. Side and top views of materials during simulation of an aircraft impacting a
cylindrical concrete structure.

0.10 s

0.34 s

0.18 s

0.49 s

0.26 s

0.64 s

Figure 11. Damage to front of structure during simulation of an aircraft impact into a
reinforced concrete structure.

Figure 2.5: Peridynamic model of an airplane impacting a concrete structure [17]

of peridynamic formulations. Using a piecewise force function, Dayal and Bhattacharya [16] were

able to model phase transformation in 1D and 2D without an additional constitutive law; the trans-

formations arose and propagated naturally as a dynamic instability, a result of the force function

used. Peridynamic models have also been used to analyze composite laminates. In [83], Xu et al.

designate peridynamic bonds as fiber or matrix bonds with different force functions to model dam-

age in composite laminates. Kilic et al. model fiber, matrix, and interfacial bonds in [34] to capture

stacking order effects on damage propagation. Bobaru [8] applied the peridynamic model to nano

fiber networks, at a scale where long-range forces are very apparent. In the same paper he created

a Representative Volume Element (RVE) for random networks of nano fibers, laying the ground

work for peridynamic multi-scale modeling. Also related to multi-scale peridynamic modeling

is work by Silling on model coarsening [65], fig. 2.6. An example of a multi-scale peridynamic

simulation can be found in [3], by Askari et al.

Concrete is a nearly standard example material in which nonlocal behavior is easily observed,

and modeling the damage accumulation and proceeding discontinuity propagation has long been

the goal of nonlocal models developed by Bažant and Pijaudier-Cabot [5] among others, signifi-

cantly predating peridynamics. In [29], Gerstle et al. use rotational degrees of freedom to create

a concrete material model, capable of describing a linear elastic material with any Poisson ratio,
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618 Silling

The level 1 grid contains every third node of the level 0 grid. The level 2 grid contains every third node of the level
1 grid (Fig. 6). Prescribed displacement boundary conditions are applied to three leftmost level 2 nodes and to the three
rightmost level 2 nodes. The values of the prescribed displacements at these nodes are given by u0

i = u1
i = u2

i = xi

where xi is the position of the node. In the level 0 and 1 models, only those nodes that exist in level 2 have prescribed
displacements.

The resulting fields u0, u1, and u2 near the defect are shown in Fig. 7. The three levels give nearly identical results
except that the jump in displacement across the defect reflects the wider spacing between nodes in the coarsened grids.
As in Example 2, the solutions agree with each other at the nodes that are present in multiple levels.

6. COMPUTATIONAL COST

To determine the implications of coarsening for the computational effort in a numerical model, consider the effect
of increasing the total volume of the level 0 body. Assuming that the discretization spacing is constant, let the total
number of level 0 nodes in the model beK0, which is proportional to the total volume of material. Suppose the linear
solver, which is applied to the fully coarsened levelM grid, uses J = aKn

M arithmetic operations, where a and n are
constants, andKM is the total number of nodes in levelM . (For Gaussian elimination, n = 3, although more efficient
methods are available.) Suppose the grid for each level has 1/L as many nodes as in the previous level, where L is
a constant. (In Example 3, L = 3. If this example were three-dimensional, then we would have L = 33.) Therefore,
KM = K0/LM .

FIG. 6: Coarsening levels 0, 1, and 2 for the one-dimensional bar in Example 3

FIG. 7: Coarsened displacement fields in a bar with a defect, Example 3

Journal for Multiscale Computational Engineering

Figure 2.6: Silling’s illustration of course-graining in time from [65].

that also handles material failure. Peridynamic models are not limited to force-displacement re-

lationships; the theory has also been applied to diffusion processes and multiphysics problems.

Peridynamic models can simulate heat transfer [9] and diffusion [10].

Mathematical analyses of simplified cases have also been fruitful. Weckner [78] determined

analytical solutions to the infinite bar problem. Emmerlick and Zimmerman proved solution ex-

istence and uniqueness in the simplest case of the peridynamic bar [20]. Mikata found additional

analytical solutions for the bar problem [46]. In 3D, Weckner constructed Green’s functions for an

infinite peridynamic solid in [79]. All of this work was done with peridynamic models limited to

pairwise force functions.

Other than Gerstle’s aforementioned micropolar peridynamic model, the pairwise force func-

tion limits 3D solid materials to a Poisson ratio of ⌫ =

1
/4. To model additional material behavior,

Silling et al. generalized the underlying peridynamic concept of bonds and forces and introduced

state-based peridynamic models in [66]. By freeing the force function from the pairwise restric-

tion, state-based models allow the force relationship between two points to depend on the collec-

tive behavior of all nearby material. Using the concept of a deformation vector-state allows for the

construction of correspondence models that can recreate any classical constitutive model. These

correspondence models use the deformation state to approximate the deformation gradient tensor,

then use the deformation gradient tensor to calculate force contributions. State-based models were

used by Foster et al. to simulate viscoplasticity and hardening in [26], and rate dependent failure

in [25], with others, via an energy criterion. Mitchell describes state-based models for plasticity

in [47] and viscoelasticity in [48]. A non-ordinary state-based model was used by Warren et al. to

simulate fracture in [77]. More recently, Tupek et al. have incorporated the idea of peridynamic
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damage into a Johnson-Cook based damage state that accumulates with plastic strain [75].

2.3 Other Nonlocal Elasticity Models

The peridynamic formulation of continuum mechanics is neither the only nor the first nonlocal

model. Nonlocal elasticity generally allows for forces at a point that are dependent on the material

configuration of an entire body, rather than the configuration at that point [22]. While long-range

forces are obvious at the molecular model, material at larger scales is conventionally modeled as

though internal forces are local or contact forces [36]. The result of such approximation is accu-

rate for deformations that are homogeneous, but introduces some inaccuracy for inhomogeneous

deformations like the propagation of waves with short wavelengths. One way to distinguish be-

tween homogeneous and inhomogeneous deformations is to incorporate higher-order gradients of

deformation. While stress in classical elasticity is a function of the (first) gradient of deformation,

Eringen’s formulation of a nonlocal modulus in [21] approximates a weighted sum of the first and

second order gradients. This introduces a length scale to the model and has the effect of smear-

ing out local deformation inhomogeneities over the surrounding material, while maintaining the

conventional result for homogeneous deformations.

Previous work in the nonlocal mechanics of beams is motivated by the observed stiffening of

nanoscale cantilevers. Challamel and Wang demonstrate in [12] that Eringen nonlocal elasticity

cannot reproduce the scale stiffening, but that stiffening does result from other gradient-elastic

models and models incorporating nonlocal curvature. Because all of these models incorporate

higher-order gradients of deformation, they impose stronger continuity requirements than classical

elasticity, and are unsuitable for discontinuous displacements. Because the gradients are evaluated

locally, gradient models are called weakly nonlocal. Recent work by Paolo et al. [57] develops a

displacement-based beam in which relative axial displacement, shear displacement, and rotation of

non-adjacent beam segments are resisted by three kinds of nonlocal spring, whose stiffnesses can

be tuned to the expected material behavior. With the appropriate nonlocal stiffnesses, their model

reproduces the nanoscale cantilever stiffening effect.
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Similarly, Duan and Wang [19] applied Eringen-type elasticity to the quasi-1D problem of

axisymmetric bending in nanoscale plates. Pradhan and Murmu [58] extended the concept to

buckling in single-layered graphed sheets, a fully 2D problem. Later, Ansari et al. [1] modeled the

vibration of single-layered graphed sheets using Eringen-type elasticity.

Nonlocal effects have also been incorporated into many of the modeling techniques previously

discussed. Bažant and Chang incorporated nonlocal strain-softening into a finite element model

in [4]. Any interpolating particle method will exhibit some measure of nonlocality, but some ex-

plicitly model nonlocal phenomena. Vignjevic et al. used SPH to model nonlocal strain-softening

in [76], and in [11], Burghardt et al. developed a material point method that incorporates nonlocal

plasticity.

2.4 Thin Features

Many engineering analyses concern shapes that have one dimension much greater than another;

numerical modeling the behavior of these shapes can be a considerable challenge for methods

designed for 3D solids. In finite element models, for example, calculations can become unstable or

too stiff when individual elements become long and thin. To avoid such elements while maintaining

model fidelity requires a very large number of solid elements. By making some assumptions

about the behavior along the thin direction, many such shapes can be modeled as 1D beams or 2D

plates or shells without great loss of accuracy. A comprehensive review of the classical continuum

mechanics associated with thin features by Reddy [59] also includes a section on the finite element

analysis of plates and shells. Material failure in classical thin features is modeled using the same

techniques as in solids. Dolbow et al. use XFEM in [18] to model fracture in plates. Li et al. use

a variant of RKPM in [37] to model plastic deformation in shells. More recently, Xu et al. have

applied XFEM to plate plasticity problems [84], and Memar Ardestani et al. have used RKPM to

model functionally graded plates [45]. Other authors use cohesive zone elements [38] or SPH [42]

to study failure in thin features.
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2.4.1 Peridynamic Models

Reduced dimension thin features such as bars [20,46,69,78], plates [35], and membranes [70] have

been modeled using peridynamics, but these models are used for in-plane or membrane forces as

shown in fig. 2.7. Because traditional peridynamic models exert forces in the direction of the bondsS.A. Silling, F. Bobaru / International Journal of Non-Linear Mechanics 40 (2005) 395–409 403

Fig. 5. (a–d) Tensile loading of a membrane containing a slit, showing transition to dynamic fracture (Example 1).

on integral equations, which are less amenable to ex-
act solutions than PDEs in initial value problems, all
of the present results were obtained using a numerical
solution method. The numerical method itself is de-
scribed elsewhere [25]; it relies on a straightforward
approximation of the integral in (1) by a finite sum
arising from discretization of the continuous body into
nodes. It will also be shown in work to be documented
separately that in the ideal case of a uniform grid
with spacing !x, the error in this approximation is of
order !x2.

7.1. Dynamic growth of a single crack from a defect

In problem 1, a square elastic membrane of thick-
ness 0.5mm and side length 50mm contains a narrow
slit of length 10mm. The edges of the membrane par-
allel to the slit are pulled apart, creating mode I loading
at the tips of the slit. The other two edges are free. The
membrane is represented using the constitutive and
damage models discussed above with properties cor-
responding to a longitudinal wave speed of 1000m/s
and a mass density of 1200 kg/m3. The critical bond
stretch for failure is !0 = 2. The membrane is free in

the transverse (through the thickness) direction at all
points other than the clamped ends. The slit is cre-
ated in the numerical model by breaking all the peri-
dynamic bonds that intersect the slit anywhere along
its length. In this way, a uniform numerical grid may
be used without any special grid generation method
in the vicinity of the damaged region of the mem-
brane. Fig. 5 shows how the slit evolves into a dy-
namic crack at four different times. In view (a), the slit
has not yet started to grow. Wrinkles are visible along
the slit edges. The wrinkles are “seeded” using small
initial displacements that vary sinusoidally throughout
the numerical model. Otherwise, these wrinkles occur
spontaneously. The wrinkles occur because the mem-
brane is free along the edges normal to the slit and
therefore tends to develop compressive strains paral-
lel to the slit. In the remaining views in Fig. 5, the
crack is propagating. Wrinkles appear in the wake of
the crack. In view (d), the crack has grown to the free
edges of the membrane, and the two resulting halves
of the membrane are rebounding. In Fig. 6, the pre-
dicted crack growth velocity is plotted as a function
of crack tip position. The increase in crack velocity
up to an asymptotic limiting value (in this case about

Figure 2.7: Tearing a peridynamic membrane [70]

between points, they are not well-suited for bending problems of thin shapes, in which force and

displacement are both nearly perpendicular to bonds connecting material points at separate points

on a surface. Just as with solid finite elements, most peridynamic models of thin features like the

tubes in fig. 2.8 have included several nodes through the thickness of a thin part to capture bending

behavior. Also as with solid finite elements, this leads to very fine discretization of thin features,

even when the expected behavior is quite simple. This greatly increases the computational expense

of modeling parts with thin features.

A recent paper by Taylor and Steigmann [73] partially addresses this issue by starting with

mathematical analysis of the continuous 3D bond-based peridynamic solid model of a thin plate.

By using a continuous model, they avoid the difficulties associated with discretizing thin fea-
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� Example Simulation: Fragmenting Brittle Cylinder 
� Motivated by tube fragmentation experiments of Winter (1979), Vogler (2003)* 

 

Demonstration Computation 

* D. Grady, Fragmentation of Rings And Shells: The Legacy of N.F. Mott, Springer, 2006. 

Simulation performed 
with Peridigm 

After 
(brittle model) 

Before 

Color  
indicates  
damage 

After 
(plastic model) 

Figure 2.8: A peridynamic cylinder uses several nodes through its thickness in [39]

tures. Applying asymptotic analysis to the continuous model, they reduce a 3D solid model to

2 dimensions. The asymptotic reduction is accomplished by the addition of degrees of freedom

for the derivative of displacement with respect to the through thickness direction. By making

the through-thickness derivative of displacement vector an independent variable, the resulting flat

model includes a measure of angular deformation that allows resistance to bending. Using a sim-

ple bond-stretch damage criterion, the Taylor and Steigmann’s reduced model was able to capture

the out-of-plane displacement (fig. 2.9) associated with crack propagation behavior (fig. 2.10) in

a pre-cracked plate under tension loading. In general, however, the asymptotic reduction model

encounters difficulty when nonlinear behaviors like damage are implemented. The use of a bond-

stretch criterion as implemented is only appropriate when deformation is dominated by in-plane

tension, as failure caused by bending will not be captured. Because of its basis in the 3D bond-

based solid model, Taylor and Steigmann’s model is limited to a Poisson’s ratio of 1⁄3. While it

is possible that future analysis will extend the asymptotic reduction to state-based model, allow-

ing for arbitrary Poisson’s ratios, there are significant mathematical hurdles that will have to be

overcome.
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12 Mathematics and Mechanics of Solids

Figure 7. Out-of-plane displacement for plate with flat central crack at t = (a) 0 s, (b) 1.8 µs, (c) 3.6 µs, (d) 5.4 µs, (e) 7.2 µs, (f) 9
µs.
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Figure 2.9: Taylor and Steigmann’s asymptotic reduction allows for bending resistance in a 2D
plate in tension [73]

Taylor and Steigmann 11

Figure 5. Damage at t = 9 µs plotted on the reference configuration for the plate with a flat central crack. Self-similar crack growth
is observed including the development of branches (a). A close-up of branching at the crack tip (b) shows the formation of four
branches. The plate is colored according to the amount of damage as described in Figure 4.

Figure 6. Damage at t = 9 µs plotted on the reference configuration for the 45◦ angled crack. The crack changes direction in order
for fracture to be of Mode 1 type (a). Three distinct branches are shown in a close-up of the crack tip (b). The plate is colored
according to the amount of damage as described in Figure 4.
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Chapter 3: CLASSICAL BACKGROUND

3.1 Euler-Bernoulli Beam Theory

The simplest representation of bending behavior is found in the Euler-Bernoulli beam equation,

d2

dx2

✓
EI

d2
v

dx2

◆
= q , (3.1)

which describes the transverse deflection of long-slender beams. Equation (3.1) is for a beam in

the x̂ direction, whose displacement v is perpendicular to x̂ and parallel to the distributed load q

acting on the beam. While it is only applicable to small deformations and rotations, there are many

problems that can be easily and usefully simplified by the application of Euler beams.

It is important to note that eq. (3.1) is not a constitutive equation; it does not relate stress and

strain for a material. Instead, it is derived from the constitutive equation for a linearly-elastic ma-

terial and some assumptions about the deformation. Euler-Bernoulli beam theory is much simpler

than a 3D analysis of a beam as a solid material, but it requires the following assumptions to be

met:

• Slenderness: the length of the beam should be 20 times its other dimensions

• Loaded transversely, no axial loads or torques

• Small deformations and rotations

• Plane cross-sections of the beam remain plane under deformation

• Initially straight, and symmetric about the plane of bending

First, we take a infinitesimal slice of a beam as depicted in fig. 3.1. Because we will want to

compare to this model later, we use a different y-coordinate direction than many presentations. We

use this infinitesimal slice to derive the relationship between load, shear, and moment.
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dx

V

M

V + dV

M + dM

q

x

y

Figure 3.1: Infinitesimal Beam Slice

A force balance demonstrates that the x-derivative of internal shear force is the applied load.

V = V + q dx+ dV =) dV
dx

= �q . (3.2)

The moment balance can be performed about any point, but it is simplest to use the right side.

M � V dx+ q dx
dx
2

= M + dM =) dM
dx

= �V + O(dx) . (3.3)

Next, we will use the deformation assumptions to frame the bending as a simple arc from which

⇢ =

1
/

✏ = �y

d�

ds

Figure 3.2: Small deformation in an Euler beam

we can deduce a relationship between the transverse displacement of a beam section and its angle
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and radius of curvature to be
1

⇢

⇡ d�
dx

⇡ d2
v

dx2
=  . (3.4)

The radius of curvature, ⇢ is the radius of the arc formed by the beam’s neutral axis, which does not

change in length as the beam bends. We use this same arc to find the strain in material that is at a

distance y from the neutral axis. In a linearly elastic material, the resulting stress is proportional to

Young’s modulus E. To find the bending moment that results from that stress profile, we integrate

the moment contribution through the beam.

Mresisted =

Z top

bottom
y�dA =

Z top

bottom
y

2
EdA . (3.5)

In equilibrium, the moment resisted will be equal and opposite to the moment applied

 =

Mapplied

E

R top
bottom y

2
dA

. (3.6)

The integral in the denominator is the bending resistance of the beam’s shape, called its second

moment of area, about the neutral axis. The second moment of area is generally represented by

I . By combining eqs. (3.2) to (3.4) and (3.6), we reproduce eq. (3.1), the Euler-Bernoulli beam

equation. If the Young’s modulus and beam cross section are constant throughout the beam, the

equation can be further simplified to

EI

d4
v

dx4
= q .

Obviously, to solve for the deformed position we will require 4 constraints from boundary

conditions. The nature of the constraints is determined by the support configuration. The most

common end conditions are listed table 3.1. Other end constraints, such
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Table 3.1: Common Beam End Conditions
End Condition Contraint 1 Constraint 2
End Load v

000
= ±F v

00
= 0

End Torque v

000
= 0 v

00
= ±⌧

Simply Supported v

00
= 0 v = vsupport

Clamped v

0
= v

0
clamp v = vclamp

3.2 Kirchhoff-Love Plate Theory

Like Euler-Bernoulli beam theory, Kirchhoff-Love Plate theory begins by making simplifying as-

sumptions about the plate and its deformation.

• Slenderness: the length and width of the plate should be 20 times its thickness

• Loaded transversely, no in-plane loads or torques

• Small deformations and rotations

• Straight lines normal to the plate remain normal to the center plane of the plate under defor-

mation

• Initially flat

These assumptions allow us to simplify our strain-displacement relationships and formulate our

curvatures and strains in terms of the transverse displacement w;



x

=

@

2
w

@x

2
, 

y

=

@

2
w

@y

2
, 

xy

=

@

2
w

@x@y

,

"

x

= �z

x

, "

y

= �z

y

, �

xy

= �2z

xy

.
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To find the stresses at any point, we apply Hooke’s law and find

�

x

= � Ez

1 � ⌫

2
(

x

+ ⌫

y

) ,

�

y

= � Ez

1 � ⌫

2
(

y

+ ⌫

x

) ,

⌧

xy

= � Ez

1 + ⌫



xy

.

As with the beam, these stresses can be integrated over the thickness of the plate to determine the

resulting moments.

M

x

=

Z
t

/2

� t

/2

z�

x

dz = �D (

x

+ ⌫

y

) ,

M

y

=

Z
t

/2

� t

/2

z�

y

dz = �D (

y

+ ⌫

x

) ,

M

xy

=

Z
t

/2

� t

/2

z⌧

xy

dz = �D (1 � ⌫)

xy

,

with

D =

Et

3

12 (1 � ⌫

2
)

as the flexural rigidity. Note that a beam of unit width would have a second moment of area I =

t

3

12 ,

so the flexural rigidity of a plate is greater by a factor of 1
1�⌫

2 . The difference between the values

reflects the fact that, when a plate is bent in one direction, poisson ratio effects promote curvature

in the opposite direction at a right angle. Constraining this saddle-shaped (or anticlastic) bending

increases the stiffness or rigidity of the plate.

Constructing the governing equation is more complicated than for beams because, instead of

shear V and moment M on an infinitesimal section, we have shears V
x

and V

y

and moments M
x

,

M

y

, and M

xy

. Balancing forces gives us

@V

x

@x

+

@V

y

@y

= p ,
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for transverse pressure p. Balancing moments gives

about x :

@M

xy

@x

+

@M

y

@y

� V

y

= 0 ,

about y :

@M

xy

@y

+

@M

x

@x

� V

x

= 0 .

Combining the force and moment balance equations generates the governing equation

@

4
w

@x

4
+ 2

@

4
w

@x

2
@y

2
+

@

4
w

@y

4
=

p

D

.

As with the beam case, we will need to apply boundary conditions in order to find the deformed

configuration.
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Chapter 4: PERIDYNAMICS BACKGROUND

4.1 Peridynamic States

Introduced by Silling et al. in 2007 [66], peridynamic states are functions of the behavior of the

continuum points surrounding each location. As is appropriate for a theory based on force-carrying

bonds, states often operate on vectors. The most common states are scalar-states and vector-states

which are scalar and vector valued, respectively. As a matter of convention, scalar states are usually

denoted by lowercase letters (e.g. a , b), while vector states are denoted by uppercase letters (e.g.

A, B). A state that operates on vectors and is itself vector valued naturally brings to mind a

two-point tensor such as the deformation gradient; unlike a second order tensor, which can only

map vectors linearly to other vectors, vector-states can produce nonlinear, discontinuous, or even

noninvertable mappings. This difference is illustrated in fig. 4.1.

156 S.A. Silling et al.

3 Vector States and Tensors

It is readily verified that for any order m, Am is a real Euclidean linear space [18]
with a scalar product supplied by the dot product defined in (11). This is in spite of
the fact that the dependence of a state on the operand ξ may be nonlinear.

The concept of a vector state is similar to that of a second order tensor in that they
both map vectors into vectors, but with three important differences:

• A state is not in general a linear function of ξ .
• A state is not in general a continuous function of ξ .
• The real Euclidean space V is infinite-dimensional, while the real Euclidean

space L2 (the set of second order tensors) has dimension 9.

These differences are illustrated schematically in Fig. 1. From the above list, it is clear
that vector states are more general than second order tensors, and that second order
tensors are in some sense a special case of vector states. To make this idea more
precise, the following tools called “expansion” and “reduction” are now introduced
to translate between the two concepts.

Definition 3.1 Given a second order tensor W, let E(W) ∈ V be the vector state
expanded from W, defined by

E(W)⟨ξ⟩ = Wξ ∀ξ . (15)

Definition 3.2 Let a scalar state ω ∈ S be given. Suppose that ω is nonnegative on
H. Suppose further that there is a subregion with nonzero volume H′ ⊂ H such that
ω is strictly positive on H′. Then ω is called an influence function. If ω is an influence

Fig. 1 A symmetric second order tensor maps a sphere into an ellipsoid, while a state maps it into a
more complex and possibly discontinuous surfaceFigure 4.1: The deformation tensor linearly maps spheres to ellipsoids, while a vector state can

map spheres nonlinearly to complex and even discontinuous shapes [66]

The mathematical properties of states and several related operators are defined in [66]. Im-

portant properties of states are magnitude and direction, while important operations include the

addition and composition of states, inner and tensor products, and the Fréchet derivative of a func-
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Table 4.1: Common State Operation Nomenclature
Operation Notation Meaning
Addition (a + b)h⇠i ah⇠i + bh⇠i
Multiplication (ab)h⇠i ah⇠ibh⇠i
Scalar Product (A · B)h⇠i Ah⇠i · Bh⇠i
Composition (A � B)h⇠i AhBh⇠ii

Dot Product A • B

Z

H
Ah⇠i · Bh⇠i

a • b

Z

H
ah⇠ibh⇠i

Vector Norm |A|h⇠i |Ah⇠i|

State Norm kAk
p

A • B

Fréchet Derivative rf (A)

@f

@A

 (A,B)A
@ 

@A

tion with respect to a state. While some of these operations are intuitive, the nomenclature may not

be. Refer to table 4.1 for the notation of common state operations. For a more rigorous definition

and examples of the Fréchet derivative, see appendix A.

4.2 State-based Models

Conservation of linear momentum in the state-based peridynamic formulation results in the equa-

tion of motion

⇢(x)

¨

u(x) =

Z

⌦

(T[x]hq � xi � T[q]hx � qi)dVq + b(x) , (4.1)

in which T[ ]h i is a force vector-state that maps the vector in angle brackets, hi, originating at

the point in square brackets, [ ], to a force vector acting on that point. The deformed image of the

vector (q � x) is defined as the deformation vector-state, usually denoted Y and formulated

Y[x]hq � xi = (q � x) + (u(q) � u(x)) (4.2)
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for a displacement field u. Just as stress and strain are work conjugate, so too are the force and

deformation vector states for hyperelastic materials.

State-based models include surrounding material behavior illustrated in fig. 4.2 in the force

function between each pair of continuum points. It is common for the formulation of the force

state T to be scaled by a weighting function, commonly represented by !, that makes explicit the

region in which the force relationship between points is nonzero. Perhaps the simplest and most

common weight function is eq. (5.8), representing a constant nonzero value for bonds shorter than

the peridynamic horizon �.

!(⇠) =

8
>><

>>:

1 if |⇠|  � ,

0 if |⇠| > � .

(4.3)

Many evaluations of forces, energies, and other states at a given point are reduced from being inte-

grals over the entire body to being integrals over that point’s neighborhood H. This is particularly

useful when trying to apply peridynamic models to real-world problems, especially when using

computer models. If the force state T is always in the same direction as the deformation state

H0

⌦

0

Y[x]hq � xi

Figure 4.2: The body ⌦ deformed by the deformation state Y

Y, then the force exerted by a “bond” between points is in the same direction as the deformed

bond, and the model is called ordinary. Ordinary state-based models can reproduce linear elastic

materials with arbitrary Poisson ratios by separating dilatory and deviatoric deformations and the

energy corresponding to each. They can also model a variety of elastic and inelastic behaviors.

There is no requirement that force states be in the same direction as their associated deforma-
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tion states, and models in which they are not in the same direction are called nonordinary. Some

additional care is needed to ensure that angular momentum is conserved in a nonordinary state-

based model, but they are still perfectly legitimate. Silling et al. demonstrates the possibility of

such models in [67], but very little work has touched on their use. Foster et al. [26] and Warren et

al. [77] show that some correspondence models, which approximate the deformation gradient and

use it to calculate bond forces, result in non-ordinary state-based constitutive models for finite de-

formations. Bond-based, ordinary state-based, and nonordinary state-based models are illustrated

in fig. 4.3.

Peridynamic states and constitutive modeling 163

be unwieldy if we had to prove that it holds for every possible deformation of a body,
to a much more manageable condition on the constitutive model.

Definition 8.3 Let the deformed direction vector state M be the unit state valued
function defined by

M(Y) = Dir Y ∀Y ∈ V, (43)

thus M(Y)⟨x′ − x⟩ is a unit vector that points from the deformed position of x toward
the deformed position of x′.

Definition 8.4 If a material has the property that for any deformation there exists a
scalar state t such that

T = t M, (44)

then the material is called ordinary, and t is called the scalar force state field.
Otherwise the material is called non-ordinary. (Schematics of ordinary and non-
ordinary material models are shown in Fig. 3.)

In an ordinary material, (44) implies

(Dir T)⟨ξ⟩ = (Dir Y)⟨ξ⟩ whenever t⟨ξ⟩ ̸= 0. (45)

Proposition 8.2 Let B be a body composed of an ordinary material and subjected to
a body force density field b. Let T be the force vector state field in B. Then (34) holds,
i.e., balance of angular momentum is satisfied.

Fig. 3 Schematics of bond based, ordinary, and non-ordinary material response. All three of these
satisfy balance of linear momentum, and the first two always satisfy balance of angular momentum

Figure 4.3: Illustration of the three types of peridynamic models, from specific to general [66]

It should be clear that many of the concepts of classical continuum mechanics have direct

equivalents in peridynamic modeling. Table 4.2 lays out some of the simplest parallels between

classical and peridynamic formulations.
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Table 4.2: Peridynamic Equivalents of Classical Concepts
Concept Classical Peridynamic
Kinematics F Y

Linear Momentum r · �
Z

⌦

(T[x]hq � xi � T[q]hx � qi)dVq

Angular Momentum � = �T

Z

⌦

Y[x]hq � xi ⇥ T[x]hq � xidVq = 0

Constitutive Law � = �(✏) T = T(Y)

Stress Power ˙✏� T • ˙

Y

4.3 Bond-based peridynamics

If the force state T[x]h⇠i depends only on the deformed positions of the points at the end of the

bond ⇠, then the model is called bond-based. In bond-based peridynamic models, each pair of

points is treated separately, without consideration of the behavior of other points. This makes

bond-based models much simpler computationally than general state-based models, and reduces

the equation of motion to

⇢(x)

¨

u(x) =

Z

⌦

f(u(q) � u(x),q � x)dVq + b(x) . (4.4)

By choosing an appropriate function f , this model can reproduce the results of linear elasticity for

solid materials with a Poisson ration ⌫ =

1
/4 and 2-dimensional materials with a Poisson ration

⌫ =

1
/3. It can also be used to investigate a range of nonlinear behaviors by changing the force

function (examples in fig. 4.4). To conserve momentum in a bond-based model, it is only necessary

that f satisfy

f(u(q) � u(x),q � x) = �f(u(x) � u(q),x � q) , (4.5)

i.e. the forces exerted at the opposite ends of the bond between x and q must be equal and opposite.

The first peridynamic models were all bond-based, and provide useful insight into many complex

material failure phenomenon despite their limitations.
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Bond Force

Bond Elongation

Brittle

Elastic-Plastic

Linear Elastic

Figure 4.4: Bond-based models can describe a variety of material behaviors

4.4 Important Peridynamic Models

Though they cover only a small portion of the behaviors modeled with peridynamics, these few

examples should serve to illustrate the form and analysis of peridynamic material models.

4.4.1 Bond-based Elastic Solid

The simplest peridynamic model treats each bond as a linear spring between two points. In the

bond-based formulation, there is no interaction between different bonds, so the force function is

f(u(q) � u(x),q � x) = !(|q � x|) c s [(q+ u(q)) � (x+ u(x))] , (4.6)

with weighting function !, spring constant c, and the stretch s defined by

s = |(q+ u(q)) � (x+ u(x))| � |q � x| . (4.7)
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For a deformation gradient F representing small uniform displacements, i.e. ru << 1, the stretch

of bond ⇠ = q � x is

s = |F⇠| � |⇠| = ✏

ij

⇠

i

⇠

j

|⇠| .

For reasons that will become clear in the discussion of the next model, we calibrate the spring

constant c following the approach of [66], by comparing the energy to that of a classical solid

under purely deviatoric deformation, so that ✏
ij

= ✏

d

ij

. The energy of this spring will be in units of

energy per volume squared, so that integration over all the springs at a point gives energy per unit

volume,

w =

c s

2

2

,

W =

c

2

Z

H
!(|⇠|)

 
✏

d

ij

⇠

i

⇠

j

|⇠|

!✓
✏

d

kl

⇠

k

⇠

l

|⇠|

◆
dV

⇠

,

=

c

2

✏

d

ij

✏

d

kl

Z

H

!(|⇠|)
|⇠|2 ⇠

i

⇠

j

⇠

k

⇠

l

. (4.8)

Because ! depends only on |⇠|, we can rewrite this integral in spherical coordinates as

W =

c

2

✏

d

ij

✏

d

kl

Z
�

0

!(r)

r

2

Z 2⇡

0

Z
⇡

0

(⇠

i

⇠

j

⇠

k

⇠

l

) r

2
sin(�) d� d✓ dr .

Recognizing that ⇠1 = r sin� cos ✓, ⇠2 = r sin� sin ✓, ⇠3 = r cos�, we can see that configurations

of [i, j, k, l] with an odd number of any index result in integrals with an odd number of one or more

of cos ✓, sin ✓, cos�, and therefor are equal to 0. For the remaining configurations,

Z
�

0

!(r)

r

2

Z 2⇡

0

Z
⇡

0

(r

4
sin

4
� cos

2
✓ sin

2
✓) r

2
sin(�) d� d✓ dr =

4⇡

15

Z
�

0

!(r)r

4
dr .

This leaves only configurations such as [1, 1, 3, 3], [1, 2, 1, 2] and [3, 2, 2, 3], which we can indicate

by (�

ik

�

jl

+ �

il

�

jk

+ �

ij

�kl) . Additionally, any combination with i = j or k = l results in terms ✏d
ii
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or ✏d
kk

. Such terms sum to 0 in deviatoric deformation, leaving only (�

ik

�

jl

+ �

il

�

jk

).

W =

c

2

✏

d

ij

✏

d

kl

4⇡

15

Z
�

0

!(r)r

4
dr(�

ik

�

jl

+ �

il

�

jk

) ,

= c ✏

d

ij

✏

d

ij

4⇡

15

Z
�

0

!(r)r

4
dr ,

=

c ✏

d

ij

✏

d

ij

15

m.

To force the result to be independent of the horizon �, we normalize the expression by

m =

Z

H
!(|⇠|)|⇠|2 = 4⇡

Z
�

0

!(r) r

4
dr . (4.9)

By comparing to the classical strain energy density ⌦ = µ ✏

d

ij

✏

d

ij

for shear modulus µ, we can

determine the appropriate bond stiffness,

c =

15 µ

m

.

Applying a purely dilational deformation to the same model is far easier. With dilation ✓3D, the

stretch of a bond in any direction is

s =

✓3D

3

r ,

and the corresponding energy is

W =

c

2

Z

H
!(|⇠|)✓

2
3D

9

r

2
dV

⇠

,

=

c ✓

2
3D

18

Z
�

0

!(r)

Z 2⇡

0

Z
⇡

0

r

2
r

2
sin(�) d� d✓ dr ,

=

c ✓

2
3D

18

m,

=

15

9

µ

✓

2
3D

2

. (4.10)
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This shows that the model based on bond-stretch has a bulk modulus that is 15⁄9 of its shear modulus,

indicating a Poisson’s ratio of 1⁄4.

A nearly identical analysis can be performed on a simpler 2D version of the same model, de-

parting after eq. (4.8). Applying a purely deviatoric in-plane shear to such a model, and comparing

the resulting energy to that of a classical plate with thickness t gives us

c =

8 µ t

m2D
, m2D =

Z

H2D

!(|⇠|)|⇠|2dV⇠ .

Applying a planar dilation deformation to a 2D plate results in strain energy consistent with a

Poisson’s ratio of 1⁄3 rather than the value of 1⁄4 found for the 3D solid.

4.4.2 State-based Elastic Solid

The state-based linear isotropic peridynamic solid material model is both important and illustra-

tive. Developed in [66], it uses many of the important characteristics of peridynamic states to

model a linearly-elastic material with any valid Poisson’s ratio. The extension state e is exactly

the same as the stretch s in eq. (4.7). Classical material models dealing with metal plasticity often

separate deformation into dilation and deviation components. Similarly, the extension state can be

decomposed into isotropic and deviatoric extension states. Using m from eq. (4.9) as above for

normalization the dilation state is defined

✓3D =

3

m

Z

H
!(⇠)|⇠|edV⇠ . (4.11)

The isotropic and deviatoric extension states are defined in turn

e

i

=

✓3D|⇠|
3

, e

d

= e � e

i

. (4.12)
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If the energy associated with dilation is set to

W

i

=

k ✓

2
3D

2

,

then the corresponding force state is

t =

3k✓3D

m

!(⇠)|⇠| .

We saw in the analysis of the bond-based model the necessary bond stiffness to match the energy

associated with purely deviatoric deformation. The two can be combined for eq. (4.13), a force

state that clearly indicates the separate responses to dilation and deviatoric deformation:

t =

3k✓3D

m

!(⇠)|⇠| + 15 µ

m

!(⇠)ed . (4.13)

A quick examination shows that, in the case that the dilation ✓3D is not constant, the force at

either end of a bond will not satisfy eq. (4.5). Thus such a model is not possible in a bond-based

framework without significant modification.

4.4.3 Correspondence Models

One way to create a peridynamic material model is to start from a material model in classical

dynamics. Classical models based on the deformation gradient have the advantage of decades

of development and tens of thousands of hours of testing, and they enjoy widespread use in the

continuum mechanics community. Peridynamic correspondence models use the relative positions

of a points neighbors to determine ¯

F(Y), a nonlocal approximation of the deformation gradient F.

¯

F(Y) =

Z

H
!(|⇠|)(Yh⇠i ⌦ ⇠) dV⇠

�
K

�1
, (4.14)
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with the shape tensor K defined by

K =

Z

H
!(|⇠|)(⇠ ⌦ ⇠) dV⇠ .

When F is constant, ¯F(Y) is exactly equal to F. If the classical model in question is hyperelastic

with energy density ⌦(F), it is a simple matter to force the peridynamic model to have identical

energy by defining

W (Y) = ⌦(

¯

F(Y)) , (4.15)

and find the force vector state by taking the Fréchet derivative of W with respect to Y. Alternately,

the classical continuum model can be applied to find the first Piola-Kirchhoff stress P associated

with ¯

F:

P =

@⌦(

¯

F)

@

¯

F

. (4.16)

The resulting force state is calculated from the stress according to

Th⇠i = !(⇠)PK

�1⇠ . (4.17)

For homogenous deformations, the result is a peridynamic model that exactly reproduces the clas-

sical model without ever taking a derivative. For problems with very inhomogenous (on the scale of

the peridynamic horizon) deformations, the peridynamic model will exhibit scale effects not seen in

the classical model, acting to smooth out the effect of short-scale deformations. For discontinuous

deformations, the classical model cannot be evaluated at all, but the peridynamic correspondence

model will have no such problem. It may be necessary however to revisit the choice of model or

implement some damage condition.

All three of these models are based on solid materials. In such materials, the fundamental

deformation mode is stretch or extension. Consider instead a thin beam deflecting under transverse

load; at the scale of the whole beam, the deflection behavior is the result of bending deformation.

To model the beam with a solid material model, it is necessary to use a much smaller scale - one
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in which the beam can be seen to stretch on one side and compress on the other. Alternatively, in

a model whose fundamental mode of deformation is bending, the same beam could be modeled at

the same scale as its behavior.
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Chapter 5: MODEL DEVELOPMENT

5.1 Bond Pair Material Model

Consider the material model illustrated in fig. 5.1 in which every bond-vector originating from a

point is connected by a rotational spring to its opposite originating from that same point. If we call

undeformed bond pair

deformed bond pair
✓

Figure 5.1: Illustration of a bond pair model that resists angular deformation

the deformed angle between these bonds ✓, and choose the potential energy of that spring to be

w(⇠) = !(⇠)↵[1+ cos(✓)] for the bond pair ⇠ and �⇠, we can recover the non-ordinary force state

proposed by Silling in [66] by taking the Fréchet derivative. For the derivation and a description

of the Fréchet derivative see appendix A.

Th⇠i = rw(Yh⇠i) ,

= !(⇠)
�↵

|Yh⇠i|
Yh⇠i
|Yh⇠i| ⇥


Yh⇠i
|Yh⇠i| ⇥ Yh�⇠i

|Yh�⇠i|

�
. (5.1)

Though it looks complex, eq. (5.1) indicates a bond force perpendicular to the deformed bond and

in the plane containing both the deformed bond and its partner as illustrated in fig. 5.2. The force

magnitude is proportional to the sine of the angle between the bonds divided by the length of the

deformed bond. This response is consistent with the idea of a rotational spring between bonds as

⇠�⇠

Yh�⇠i Yh⇠i�Th�⇠i �Th⇠i

Th⇠i +Th�⇠i

Figure 5.2: Deformation and force vector states

long as the change in angle is small. Because the potential energy and force states are functions
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of pairs of peridynamic bonds, we will call this formulation a bond-pair model. Other choices

for the bond-pair potential function, such as w = (⇡ � ✓)

2, are also possible, but result in more

mathematically complex analysis.

5.2 Bond Pair Beam in Bending

The simplest application of our bond-pair based peridynamic model is that of fig. 5.3, a beam in

transverse bending. Much of the material in this section can also be found in [54].

x

y

2�

Figure 5.3: A continuous peridynamic beam with horizon �

5.2.1 Energy Equivalence

To determine an appropriate choice of ↵ for eq. (5.1), we desire our peridynamic model to have an

equivalent strain energy density to a classical Euler-Bernoulli beam in the local limit, i.e. when the

nonlocal length scale vanishes. We will begin with the assumptions from Euler beam theory: the

length of the beam is much greater than thickness, vertical displacements are small, and rotations

are small. For small vertical displacements (i.e. sin ✓ ⇡ ✓) we have

✓(Yh⇠i,Yh�⇠i) ⇡ ⇡ � v(x+ ⇠) � 2v(x) + v(x � ⇠)

⇠

, (5.2)
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where v is the vertical displacement of material point. Momentarily assuming that v is continuous

and using a Taylor series to expand the right-hand-side of eq. (5.2)

✓(Yh⇠i,Yh�⇠i) ⇡ ⇡ � ⇠

@

2
v

@x

2
+ O(⇠

3
) ,

⇡ ⇡ � ⇠+ O(⇠

3
) , (5.3)

with

 =

@

2
v

@x

2
.

Substituting eq. (5.3) into the equation for the strain energy density of a single bond-pair,

w(⇠) = !(⇠)↵ [1 + cos(✓(Yh⇠i,Yh�⇠i))] ,

⇡ !(⇠)↵

⇠

2

2

()

2
+ O(⇠

4
) .

If we use a weighting function !(⇠) = !(|⇠|) and assume that the ! plays the role of a localization

kernel, i.e. ! = 0 8 ⇠ > �, the resulting strain energy density, W , for any material point in the

peridynamic beam is

W =

↵

2



2

Z
�

��

!(⇠)⇠

2
d⇠ + O(�

5
) .

Equating W with the classical Euler-Bernoulli beam strain-energy density, ⌦, and taking the limit

as � ! 0 we can solve for ↵

lim

�!0
W = ⌦ ,

↵

2

m

2
=

EI

2



2
,

↵ =

EI

m

, (5.4)

with

m =

Z
�

��

!(⇠)⇠

2
d⇠ .
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While this demonstrates the model’s equivalence to a linearly-elastic Euler beam, if we keep

an additional term from the Taylor series approximation of eq. (5.2), we recover a slightly more

complex expressions for change in angle that is demonstrated in 5.2.2 to reproduce an Euler beam

governed by Eringen’s model of nonlocal elasticity.

5.2.2 Relation to Eringen Nonlocality

If we keep an additional term from the Taylor series approximation of eq. (5.2), we recover a

slightly more complex expressions for change in angle

✓(Yh⇠i,Yh�⇠i) ⇡ arctan

✓
⇡ � ⇠

@

2
v

@x

2
� ⇠

3

12

@

4
v

@x

4
+ O(⇠

5
)

◆
,

and for the strain energy (again substituting  = v

00 for readability),

W ⇡
Z

�

��

!(⇠)↵(

⇠

2

2



2
+

⇠

4

12



00 � 3 ⇠

4

8



4
+ O(⇠

6
))d⇠ .

As the horizon � becomes small, higher-order ⇠ terms become relatively less important, and ⇠

4


4

is dominated by ⇠

2


2 for large  and by ⇠

4


00 for small . The remaining terms can be rearranged,

W ⇡
Z

�

��

!(⇠)↵

⇠

2

2

(+

⇠

2

6



00
)d⇠ ,

in a manner strongly suggesting an alternative bending resistance term. We can picture a bending

resistance based on the bond length and proportional to the nonlocal curvature ̄ = (+

⇠

2

6 
00
), so

that

̄ = (+

⇠

2

6



00
) =) (5.5)

W ⇡
Z

�

��

!(⇠)↵

⇠

2

2

̄d⇠ .
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The same analysis can be taken further to obtain higher-order energy terms with even powers of

⇠ and even order derivatives of . Not all of these higher-order terms can be separated into the

product of a local curvature and nonlocal bending resistance.

Eringen’s model for nonlocal elasticity in [21] begins with a nonlocal modulus (denoted here

as K(|x0 � x|, ⌧)) that relates the nonlocal stress t at a point to the classical (local) stress � in the

nearby material through the integral

t =

Z

V

K(|x0 � x|, ⌧)�(x0
)dv(x

0
) .

In the local limit these relationships take the form of higher-order gradients. Using a 1-dimensional

decaying exponential nonlocal modulus K(|x|, ⌧) = 1
⌧ l

e

� |x|
⌧l results in a relationship between t1D

and �1D,

✓
1 � (⌧ l)

2 @

2

@x

2

◆
t1D = �1D ,

in which (⌧ l) is a scale-based material parameter. For well-behaved t1D and �1D and small values

of �0000
1D and (⌧ l)

2, we can see that this relationship could be reformulated as

t1D =

✓
1 + (⌧ l)

2 @

2

@x

2

◆
�1D .

If we consider the results of the previous section and let dM = y�dA and � = Ey, the contribu-

tion to moment resulting from Eringen’s nonlocal elasticity in a fiber at y

Ey

2
(+ (⌧ l)

2


00
) , (5.6)

and the resulting strain energy

Z t

2

� t

2

b(y)E

y

2

2

(+ (⌧ l)

2


00
)dy ,
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bear a striking resemblance to eq. (5.5). In fact, by carefully choosing peridynamic parameter

values, the results can be made identical. For a rectangular beam of width b and thickness t,

choosing

!(⇠) = |⇠|b , � = ⌧ l

p
3 , ↵ =

Ebt

3

54(⌧ l)

4
,

results in

W ⇡ Eb

t

3

12



2

(+ ⌧

2
l

2


00
) ,

the same result for both models.

The similarity between eqs. (5.5) and (5.6) is not accidental; Eringen’s gradient elasticity is

the solution to the integral formulation of the nonlocal stress integral equation just as the peridy-

namic energy is an integral function of nonlocal displacements. It is therefore unsurprising that,

like Eringen’s nonlocal elasticity [12], this peridynamic bending model fails to predict the stiffen-

ing associated with nanoscale cantilevers. Instead, the advantage of peridynamic models is their

natural handling of discontinuities.

5.2.3 Weighting function and inelasticity

The weighting function !(⇠) describes the relative contribution of each bond-pair, and can be de-

fined according to physical or mathematical considerations. While any function !(⇠) that produces

a convergent integral for m will reproduce an elastic Euler beam, a physically meaningful choice

of ! will allow us to extend our model to certain inelastic behaviors. Consider a classical Euler-

Bernoulli beam in bending with curvature . Fibers running parallel to the neutral axis of the beam

are stretched in proportion to their distance from the neutral axis, with strain ✏ = y. If the fibers

are linearly elastic, then the axial stress at each location is � = E✏ = Ey, and the contribution

to supported moment dM = Ey

2
dA. By comparing the formulations for the moments carried

by the Euler beam in fig. 5.4 and those of the bond-pair beam in fig. 5.5, we see some definite

parallels.
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⇢ =

� 1
/

t

✏ = �y � = E✏ dM = y�dA

y =

t

/2

y = �t

/2

Figure 5.4: Euler beam moment contribution

⇢ =

1
/

v ⇡ (⇠)2

2 

✓ ⇡ ⇠

2

dM

?
= ⇠✓d⇠��

�

dM ⇡ sin(2✓)!(⇠)d⇠

�� �

Figure 5.5: Bond-pair moment contribution

ME =

Z t

2

� t

2

� y dA =

Z t

2

� t

2

E y

2
b(y)dy , (5.7a)

MPD =

Z
�

��

Th⇠i ⇠ d⇠ ,

=

Z
�

��

↵

sin(�✓)

|⇠| ⇠ !(⇠)d⇠ ⇡
Z

�

��

↵|⇠| !(⇠)d⇠ . (5.7b)

The term y is the distance from the beam’s neutral axis and b(y) is the width of the beam at

that distance from the neutral axis. The similarity between classical and peridynamic moment

formulations in eqs. (5.7a) and (5.7b) suggests a possible formulation for the weighting function:

!(⇠) = |⇠|b (y) at y =

⇠

�

t

2

. (5.8)

This weight function analogizes the relative contributions of bond pairs of different lengths

to the relative contributions of fibers at different distances from the centerline. An example for a

rectangular beam is illustrated in fig. 5.6. For an I beam with height hbeam, width wbeam, web height
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b(y)

|y|

!(⇠)

|⇠|

t

2

�

Figure 5.6: Weight function for a beam of rectangular cross-section

hweb, and web width wweb, substituting the beam profile

b(y) =

8
>>>>><

>>>>>:

wweb if |y|  hweb

2

,

wbeam if
hweb

2

< |y|  hbeam

2

,

0 otherwise ,

into eq. (5.8) gives the weight function

!(⇠) =

8
>>>>>><

>>>>>>:

|⇠|wweb if |⇠|  �

hweb

hbeam
,

|⇠|wbeam if �
hweb

hbeam
< |⇠|  � ,

0 otherwise ,

and is ilustrated in fig. 5.7. While this weighting function offers no advantages over a uniform

weight function in the case of the linearly elastic beam, it offers a way to model advancing plastic-

ity.

In a deformed elastic perfectly-plastic beam, axial fibers are still stretched in proportion to their
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b(y)

|y|

!(⇠)

|⇠|

t

2

�

Figure 5.7: Weight function for an I-beam

distance from the neutral axis, but the relationship � = E✏ = Ey only holds for |✏| = |y| < ✏

c

.

For greater stretches, the relationship becomes � = ±E✏

c

. To model this behavior, consider a

bond pair with similar behavior: for angular deformation less than some critical angle, the model

behaves as previously described, but the magnitude of the force remains constant above a critical

deformation according to

|Th⇠i| =

8
>><

>>:

↵!(⇠)

sin(✓(Yh⇠i,Yh�⇠i))
|Yh⇠i| if ✓ < ✓

c

,

↵!(⇠)

sin(✓
c

)
|Yh⇠i| if ✓ � ✓

c

.

(5.9)

To determine the critical angle ✓

c

, we let the onset of plasticity in pairs of the longest bonds to

coincide with the onset of plasticity in the fibers at the top and bottom surfaces of the classical

beam. For small curvatures �✓ = ⇠ =) �✓

c

=

2�✏
c

t

. For curvatures || > 

c

=

2✏
c

t

, the radius

within which bonds are in the elastic region is �
e

= �



c



, and parallels the distance from the beam
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centerline that fibers are in the elastic region y

e

=

t

2


c



.

Mclassical = 2

Z
y

e

0

Eb(y)y

2
dy + 2

Z t

2

y

e

Eb(y)✏

c

ydy ,

MPD = 2

Z
�

e

0

↵!(⇠)⇠

2
d⇠ + 2

Z
�

�

e

↵!(⇠)�✓

c

⇠d⇠ .

Of course, as long as the force is independent of history, this model only represents a nonlinear

elastic material. By keeping track of the plastic deformation ✓

p

(⇠) = ✓� ✓

c

of each bond-pair, and

applying it as an offset, we can reproduce the hysteresis associated with elastic-perfectly-plastic

deformation.

More simply, we can model a brittle material by setting the force to zero for bond pairs exceed-

ing a critical angle,

|Th⇠i| =

8
>><

>>:

↵!(⇠)

sin(✓(Yh⇠i,Yh�⇠i))
|Yh⇠i| if ✓ < ✓

c

,

0 if ✓ � ✓

c

,

(5.10)

and additionally recording bond pairs that have exceeded their critical angle and permanently set-

ting their influence, i.e. !, to zero.

5.3 Bond Pair Plate in Bending

The next case we will analyze is the extension of the bond pair beam model to fig. 5.8, a flat plate

in the xy plane, with displacement w in the z-direction. Much of the material in this section can

also be found in [55].

5.3.1 Energy Equivalence

As with the beam model, we determine an appropriate choice of ↵ so that our peridynamic model

will have an equivalent strain energy density to a classical Kirckhoff plate in the local limit. We

will begin with the assumptions from Kirckhoff plate theory: straight lines normal to the mid-

surface remain both straight and normal to the deformed mid-surface, and the plate thickness does
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Figure 5.8: Illustration of a bond pair on a plate.

not change with deformation. As with the Euler beam energy equivalence, we will start with the

original assumptions from Kirchhoff-Love plate theory of small displacements and rotations, but

they will not constrain the validity of the model for larger displacements and rotations. For small

vertical displacements we have

✓(Yh⇠i,Yh�⇠i) ⇡ ⇡ � w(x+ ⇠) � 2w(x) + w(x � ⇠)

|⇠| , (5.11)

where w is the vertical displacement of material point. Taking ⇠ = ⇠(cos(�), sin(�)) in cartesian

coordinates and momentarily assuming continuous displacements for the sake of comparison, we

use a Taylor series to expand the right-hand-side of eq. (5.11) about ⇠ = 0

✓(Yh⇠i,Yh�⇠i) ⇡ ⇡ � ⇠

2

�
cos

2
(�)1 + sin

2
(�)2 + 2 sin(�) cos(�)3

�
+ O(⇠

3
) , (5.12)

with

1 =
@

2
w

@x

2
1

, 2 =
@

2
w

@x

2
2

, 3 =
@

2
w

@x1@x2
.
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Substituting eq. (5.12) into the equation for the strain energy density of a single bond-pair,

w = !(⇠)↵ [1 + cos(✓(Yh⇠i,Yh�⇠i))] ,

= !(⇠)↵
⇠

2

8

(

2
1 cos

4
(�) + 

2
2 sin

4
(�) + 212 cos

2
(�) sin

2
(�) + 4

2
3 cos

2
(�) sin

2
(�)

+ 413 cos
3
(�) sin(�) + 423 cos(�) sin

3
(�)) + O(⇠

4
) .

If we use a weighting function !(⇠) = !(⇠) and assume that the ! plays the role of a localization

kernel, i.e. ! = 0 8 ⇠ > �, the resulting strain energy density, W , for any material point in the

peridynamic plate is

W =↵

Z
�

0

Z 2⇡

0

w ⇠d�d⇠ ,

=↵

3⇡

8

✓


2
1 + 

2
2 +

2

3

11 +
4

3



2
3

◆Z
�

0

!(⇠)⇠

3
d⇠ + O(�

6
) .

Equating W with the classical Kirchhoff plate strain-energy density, ⌦, and taking the limit as

� ! 0 we can solve for ↵

lim

�!0
W = ⌦ ,

↵

3⇡

8

m

✓


2
1 + 

2
2 +

2

3

11 +
4

3



2
3

◆
=


µh

3

12(1 � ⌫)

�


2
1 + 

2
2 + 2⌫11 + 2(1 � ⌫)

2
3

��

⌫=1/3

,

↵ =

2µh

3

3m

, (5.13)

with

m =

Z
�

0

Z 2⇡

0

!(⇠)⇠

2
⇠d�d⇠ ,

where µ is the shear modulus, h is the thickness of the plate, and we have evaluated the classical

Kirchhoff strain-energy at a Poisson ratio of 1
/3 in order to solve for alpha as a constant. Because

↵ is inversely proportional to m, the energy does not change with varying choices for ! and �.

It should be noted that the restriction ⌫ =

1
/3 is the same imposed by the use of a bond based
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peridynamic model for in-plane deformation of a 2D peridynamic plate. We will show an extension

to this model that removes this restriction in Section 5.4.

5.3.2 Combining Bending and Extension Models

The bond-pair bending model does not resist in-plane stretching or shear deformation because

these deformations preserve the angles between opposite bonds. If these behaviors are expected in

combination with bending, a useful model must resist both in-plane and transverse deformations.

To create a plate model that also resists these deformations, i.e. a flat shell, we combine the bond-

pair model with a two-dimensional version of the original bond-based linearly-elastic peridynamic

solid model from [64]. In this model, individual bonds act as springs resisting changes in length;

Th⇠i = � (|Yh⇠i| � |⇠|) Yh⇠i
|Yh⇠i| . (5.14)

By matching the energy of a 2D material in shear deformation, we can relate � to the shear modulus

and thickness of the shell. Following the example of [66], we begin with a 2D material under pure

in-plane shear. In Einstein notation, the strain energy of this material is

WC = µ h ✏

d

ij

✏

d

ij

,

WPD =

�

2

Z

A

!(⇠) (|Yh⇠i| � |⇠|)2 dA⇠ ,

=

�

2

Z

A

!(⇠)

✏

ij

⇠

i

⇠

j

|⇠|
✏

kl

⇠

k

⇠

l

|⇠| dA⇠ ,

=

�

2

✏

d

ij

✏

d

kl

Z

A

!(⇠)

|⇠|2 ⇠i⇠j⇠k⇠l dA⇠ ,

where ✏

d is the deviatoric strain tensor. To evaluate the integral we will exploit the symmetry

properties. With i, j, k, l = 1, 2. For a circular !(⇠) = !(|⇠|), combinations of {i, j, k, l} with an

odd number of each index, such as {1, 1, 1, 2} or {2, 1, 2, 2}, will result in odd powers of sine and
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cosine and integrate to 0.

m =

Z

A

!(⇠)|⇠|2 dA⇠ ,

W

d

PD =

� m

16

[3(✏11✏11 + ✏22✏22) + (✏11✏22 + ✏12✏12 + ✏12✏21 + ✏21✏12 + ✏21✏21 + ✏22✏11)] ,

=

� m

16

✏

d

ij

✏

d

kl

(�

ij

�

kl

+ �

ik

�

jl

+ �

il

�

jk

) ,

=

� m

8

✏

d

ij

✏

d

ij

=)

� =

8 µ h

m

.

Having calibrated the bond-extension model to the shear modulus for a case of pure in-plane shear,

applying a different uniform strain (such as might result from uniaxial tension) reveals the bond-

based model to result in a one-parameter linearly-elastic model with Poisson’s ratio ⌫ =

1
/3.

Combining the bending and extension models allows for the description of more complex be-

haviors, particularly the stiffening effect of in-plane tension on the transverse bending of a shell.

Consider a single bond-pair in the combined model shown in Fig. 5.9. As the two sides are pulled

⇠�⇠

�Th⇠i
extension

�Th⇠i
bending

Th⇠i +Th�⇠i

�Th�⇠i
bending

�Th�⇠i
extension

Yh⇠iYh�⇠i

Figure 5.9: The Hybrid Model Combines Bending and Extension Components

apart, the magnitude of the extension force in each bond increases, and the magnitude of the bend-

ing force decreases. At the same time, the angle at which the extension force acts decreases, and

the angle of action for the bending force increases. For small amounts of bending and reasonable

stretches, increased tension in the direction of the bond pair results in increased restorative force.
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5.4 Extension to arbitrary Poisson ratio

Although many materials have Poisson ratios of ⌫ ⇡ 1
/3, it is nonetheless desirable to extend the

model to materials with arbitrary Poisson ratios. For isotropic, linearly elastic models of solid

materials, Silling et al. extended the peridynamic material model to arbitrary material parameters

in [66] by decomposing the deformation into isotropic and deviatoric components. In the absence

of plastic deformation, we need only find the difference between the strain energy of a deformed

bond-based plate and the strain energy of an elastic plate with Poisson’s ratio ⌫ 6= 1
/3. The differ-

ence is a function of the isotropic strain in two dimensions, ✓2D

W

?

=

µ h

2

✓
3⌫ � 1

1 � ⌫

◆
✓

2
2D ,

✓2D =

2

m

Z

A

!(⇠)|⇠|(|Yh⇠i| � |⇠|) dA⇠ ,

Wtotal =
µ h

2

✓
3⌫ � 1

1 � ⌫

◆
✓

2
2D +

4 µ h

m

Z

A

!(⇠)(|Yh⇠i| � |⇠|)2 dA⇠ .

This is to be expected because the bond-based model was calibrated to the shear strain energy,

leaving discrepancies proportional to the isotropic strain energy that fall to 0 as Poisson’s ratio

approaches ⌫ =

1
/3.

This decomposition method inspires a similar approach to our plate model. To perform the

same extension for the plate model in bending, we find the error in the 1-parameter strain energy

for ⌫ 6= 1
/3

W

?

=

µh

3

12(1 � ⌫)

�


2
1 + 

2
2 + 2⌫12 + 2(1 � ⌫)

2
3

�

� µh

3

12(1 � 1
3)

✓


2
1 + 

2
2 +

2

3

⌫12 + 2(1 � 1

3

)

2
3

◆
,

W

?

=2µ

h

3

12

3⌫ � 1

1 � ⌫

✓
1 + 2

2

◆2

.

The discrepancy in energy is proportional to the square of average curvature, 1+2
2 , which we will

also refer to as the isotropic curvature. The isotropic curvature can be envisioned as the portion of
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the deformation that resembles a hemispherical bowl. The remainder of the bending deformation,

that which is left when the isotropic curvature is subtracted out, resembles a saddle. This remaining

component is the deviatoric deformation, and both components are shown in fig. 5.10. Note that

the orientation of the deviatoric bending will change depending on the particular curvature being

decomposed, while the isotropic curvature will only change in scale. A complete decomposition of

�1.0�0.5
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Figure 5.10: Bending Deformation Decomposed into Isotropic and Deviatoric Portions

bending energy into isotropic and deviatoric components as performed by Fischer in [24] produces

a far more complex model and is unnecessary at this time. For a single bond pair we can represent

the curvature vector along the bond pair as

⇠̂ =
Yh⇠i +Yh�⇠i

|⇠|2 .

For large rotations, we can define an average curvature vector ¯. This leads us to model the average

curvature as

¯ =

1

m

Z
�

0

Z 2⇡

0

!(⇠)

Yh⇠i +Yh�⇠i
⇠

2
⇠d�d⇠ ,

m =

Z
�

0

Z 2⇡

0

!(⇠)⇠d�d⇠ .

The weighting function !(⇠) performs the same function as in the previous section. We can rewrite
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the energy discrepancy in terms of ¯.

W

?

= 2µ

h

3

12

3⌫ � 1

1 � ⌫

¯2
.

We can take the Fréchet derivative (details in A) to produce a correction force vector state

T

?h⇠i = 8µ

m

h

3

12

3⌫ � 1

1 � ⌫

!(⇠)

⇠

2
¯ , (5.15)

that is not directly dependent on the deformation of a single bond pair. Instead, eq. (5.15) represents

a bond-length dependent “pressure” applied to every pair of bonds extending from a node. This

“pressure” is proportional to the curvature vector at that node. A weighting function !(⇠) = |⇠|

can ensure that the integral expression for force at a point is convergent. This extra term that

is dependent on the bending of all the pairs around a material point means that the extension is

not properly a bond-pair model. Instead, it would be more accurate to call it a bond-multiple

model, in which the bond forces and energies are functions of the relationship between a family of

bonds. In either the continuous or discrete cases, this model extension requires the additional step

of evaluating the isotropic curvature at each point, but the increased complexity of the extended

model captures in the local limit the behavior of a two-parameter elastic material plate.
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Chapter 6: NUMERICAL SIMULATION

The models developed in chapter 5 are all based on a continuum material containing an infinite

number of points. The model parameters and behaviors are defined by integrals over length or

area, and only make sense if properties are defined continuously. This is not to say that the prop-

erties themselves need be continuous, but they cannot be defined only at a finite number of points.

While such models are mathematically convenient, they are less convenient for performing many

engineering problems. For the analysis of these problems, it is useful to have a discretized version

of the model that can be evaluated from the properties of a finite number of peridynamic nodes that

represent the continuous feature.

Horizon �

Neighborhood H

Body B

Bond ⇠
⇠
i

�⇠
i

Figure 6.1: Translating Continuum Peridynamics to a Discrete Domain

Discretizing the continuous domain of interest as illustrated in fig. 6.1 is a straightforward

task. First, the entire domain is divided into small, non-overlapping subdomains. Ideally, these

subdomains are regular in size and compact in shape, and it is important that the largest dimen-

sion of a subdomain be similar to the smallest dimension as well as significantly smaller than the

peridynamic horizon.

A peridynamic node is then placed at the centroid of each subdomain. This node has no volume

(is a zero-dimensional point), but it does have mass equal to the mass of the material in the subdo-

main. After the nodes are placed, neighborhoods are constructed. The neighborhood of the node

at x
i

consists of all the nodes x
j

for whom |x
j

� x

i

| is smaller than the horizon. As the number
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of nodes in each neighborhood increases, the material represented by the nodes in a neighborhood

will converge to the material within the horizon in the continuous domain. At the same time, the

integrals of well-behaved functions over neighborhood regions in the continuous model can be

approximated by weighted sums of the same functions evaluated at the discrete nodes in a neigh-

borhood. This is the key to translating the continuous peridynamic model into a more practical

discrete version.

6.1 Discretized Bond Pair Beam

Discretizing the bond-pair model is primarily matter of exchanging integrals for sums,

w(⇠
i

) = !(⇠
i

)↵ [1 + cos(✓(Yh⇠
i

i,Yh�⇠
i

i))] ,

⇡ !(⇠
i

)

↵

2

✓
v(x+ ⇠

i

) � 2v(x) + v(x � ⇠
i

)

⇠
i

◆2

,

in which ⇠
i

is the i

th bond emanating from the point x to each of the n points within distance � of

point x.

↵ =

c �x

m

; c = EI; m =

nX

i=1

!(⇠
i

)⇠2
i

=)

W = �x

nX

i=1

EI

2

!(⇠
i

)

✓
v(x+ ⇠

i

) � 2v(x) + v(x � ⇠
i

)

⇠
i

◆2

. (6.1)

Discretization of the original model results in the equation of motion,

⇢(x)ü(x) = f(x) +

X

i

!(⇠
i

)

⇢
↵(x)

|p
i

|
p

i

|p
i

| ⇥

p

i

|p
i

| ⇥ q

i

|q
i

|

�

�↵(x+ ⇠
i

)

|p
i

|
(�p

i

)

|p
i

| ⇥

(�p

i

)

|p
i

| ⇥ r

i

|r
i

|

��
, (6.2)
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with

p

i

= ⇠
i

+ u(x+ ⇠
i

) � u(x) ,

q

i

= �⇠
i

+ u(x � ⇠
i

) � u(x) ,

r

i

= ⇠
i

+ u(x+ 2⇠
i

) � u(x+ ⇠
i

) ,

and for small displacements and rotations in a uniform beam,

⇢(x)v̈(x) =f(x)

+↵

X

i

2!(⇠

i

)

✓
v(x � 2⇠

i

) � 4v(x � ⇠
i

) + 6v(x) � 4v(x+ ⇠
i

) + v(x+ 2⇠
i

)

⇠2
i

◆
.

It is worth noting the similarity between this expression and a finite-difference fourth derivative of

displacement, a result expected from Euler beam theory. This discretization requires that nodes be

evenly spaced along the entire beam, otherwise the displacement v(x � ⇠
i

) is ill-defined. For this

reason, the discretization does not allow for areas of higher and lower “resolution”.

6.2 Discretized Bond Pair Plate

As with the beam, discretizing the bond-pair model is primarily matter of exchanging integrals for

sums;

↵ =

c (�x)

2

m

; c =

µ

(1 � ⌫)

h

3

12

; m =

nX

i=1

!(⇠
i

)⇠2
i

=) (6.3)

W = (�x)

2
nX

i=1

!(⇠
i

)

µ

2(1 � ⌫)

h

3

12

✓
w(x+ ⇠

i

) � 2w(x) + w(x � ⇠
i

)

|⇠
i

|

◆2

.

Discretization of the 1-parameter bending model results in the same equation of motion as for the

beam model (eq. 6.2).
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Figure 6.2: Discretized peridynamic plate with illustrated bond pair

Implementing the 2-parameter model requires finding the isotropic curvature at each point.

¯(x) =
1

m

X
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!(⇠
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)
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i

+ q

i
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i

,

m(x) =

X
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!(⇠
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↵

iso
(x) =

4µ

m

h

3

12

3⌫ � 1

1 � ⌫

(�x)

2
,
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(x) =

X
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(
⇥
↵

iso
(x)

¯(x) � ↵

iso
(x+ ⇠

j

)

¯(x+ ⇠
j

)

⇤
!(⇠

j

)

⇠2
j

)
.

As with the discretized beam, the discretization of the bond-pair plate (fig. 6.2) must be absolutely

regular. Discretizing the bond-pair model as proposed above requires that nodes be evenly spaced,

�x, throughout the entire plate, otherwise the displacement w(x � ⇠
i

) is undefined. For this

reason, the discretization does not allow for areas of higher and lower “resolution”. This restriction,

while inconvenient in the 1D case, is fairly restricting for plate analysis. An extension to this

discretization that would allow changing mesh resolution will require interpolation between the

nodes.

56
DISTRIBUTION A: Distribution approved for public release.



6.3 Numerical Model Extensions

6.3.1 Curved Shapes

On a curved surface, the location of the point x � ⇠ might be off of the surface entirely. One

method of applying the bond-pair model to curved surfaces is through the use of “virtual” points.

These points have no mass and do not have families of peridynamic neighbors, they only allow the

definition of bond pairs that are straight in the undeformed configuration. In the simplest method,

⇠

�⇠

⇣

�⇣
“virtual” points

Figure 6.3: Virtual Points Allow Straight Pairs on Curved Surfaces

each virtual point is located just above or below a real point in the model. In this case, properties

such as displacement are taken to be the same as for the nearby real point. Because the virtual

Yh⇠i

Yh�⇠i

Yh⇣i

Yh�⇣i

Figure 6.4: Virtual Points Take the Displacement of Nearby Real Points

point has no mass is not part of any other bond pairs, it cannot be assigned a force. Instead, the

force on a virtual point resulting from deformation of a bond pair is instead applied to the nearest

real points. This results in a straightforward extension of the bending model from flat plates (and

beams) to features that have curvatures that are small over the peridynamic horizon.
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6.3.2 Irregular Discretization

A curved surface is not the only reason to implement virtual points, and even many curved surfaces

do not allow for regular discretization. When discretization is irregular, due to three-dimensional

curvature, irregular shapes, or a need for increased resolution in some areas, there are necessarily

points at which there is no real point at the location of x � ⇠. An example of changing mesh

density resulting in a need for interpolation can be found in fig. 6.5, which shows a small family of

nodes at the edge of a change in discretization coarseness. Note that, while bonds p2 and q2 form

p1 q1

p2

q2

Figure 6.5: Virtual Points Pair Up Unpaired Neighbors

a perfect bond pair, there is no bond exactly opposite p1. To solve this, we add a virtual point to

create a bond, q1, that will form a pair with p1. Because this point is not part of the discretization,

it has no mass, and its properties must be determined from the properties of the surrounding nodes.

An easy method of determining properties (such as displacement) at virtual nodes is to use a

weighted average. For an irregular straight beam, determining the values of properties at virtual

points is simple. To determine the value of a property at point C, we used a weighted average of

the values of that property at the nearest two real points, A and B. The weight value w

B

of B is

determined to make a linear interpolation (or extrapolation) using the x-coordinates of the nearest
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two real points.

W

B

= �C

x

� A

x

A

x

� B

x

,

W

A

= 1 � w

B

.

The problem becomes a little more complicated for curved beams, but we can tackle it by project-

ing the virtual point onto the line between the two nearest real points. The weighting function is

then computed according to

AC

0
=

AB

|AB|

✓
AB

|AB|
· AC

◆
,

BC

0
=

BA

|BA|

✓
BA

|BA|
· BC

◆
,

W

B

=

8
>>><

>>>:

|AC 0|
|AB|

if |BC

0|  |AB| ,

� |AC 0|
|AB|

otherwise ,

W

A

= 1 � W

B

.

Determining properties at virtual points is more difficult in plate and shell models. One method

of generating useful weights that is relatively robust is barycentric interpolation. We start by finding

the three (non-colinear) real nodes closest to the location of the virtual node, A, B, and C. Next, we

find the signed areas of the triangles ABC, ABX, BCX, and CAX, with X being the virtual node.

The weight of node A is the area ratio between BCX and ABC, the weight of node B is the ratio

of areas CAX and ABC, and the weight of node C is the ratio of areas ABX to ABC. Using signed

areas allows the weights to be negative to extrapolate properties of a virtual node outside of ABC.

Because these weights are calculated from the initial positions of the node, they can be stored for

swift evaluation of properties at virtual nodes.

With the properties of the virtual points determined, the model can be evaluated in the same

manner as the uniformly discretized models of the previous papers. Where forces are calculated
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A

B
C

X

Figure 6.6: Barycentric interpolation is based on the relative areas of sub triangles

to act on a virtual node, those forces are redistributed to the supporting real nodes according to

the weight each point has in the interpolation. Barycentric interpolation is linear and therefore

exactly reproduces the linear displacement fields in fig. 6.7, including extrapolation well outside the

interpolation points (all of which are within the square with corners (0,0) and (1,1)). Unfortunately,

as fig. 6.8 demonstrates, barycentric interpolation is not exact for quadratic surfaces. The difference

between the quadratic surface and the linear interpolation decreases with denser discretization as

the curvature of the surface between interpolation points decreases, as demonstrated in fig. 6.8.

This method therefore requires that the curvature of the surface be small relative to the peridynamic

horizon to ensure accurate virtual node properties.

The same method of virtual nodes also allows the modeling of curved surfaces, in which the

perfect opposite of a bond may not lie near but not on the surface of the plate or shell. As long

as the curvature of the surface is small (at the scale of the peridynamic horizon), each resulting

virtual nodes will be nearly in the plane formed by its nearest neighbors. Finding the weights of

the surrounding nodes is performed just as in the planar case, except that the areas are formed

between the projection of the virtual node location X onto the plane formed by A, B, and C.

To compute the weight of node A in the interpolation of properties at virtual node X, let AB

represent the vector from node A to node B, and use

ˆ

W

A

=

B � X

2

•

BC ⇥

✓
BC ⇥ BA

|BC ⇥ BA|

◆�
. (6.4)
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Figure 6.7: Barycentric estimate and error for plane interpolation
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Figure 6.8: Barycentric estimate and error for quadratic surface
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Figure 6.9: Barycentric estimate improves with denser discretization

After finding ˆ
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and ˆ

W

C

in similar fashion,
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ˆ

W

A

ˆ
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If the projection of X onto the plane defined by A, B, and C lies outside the triangle ABC, one or

two of W
A

, W
B

and W

C

will be negative, though they will still sum to 1.

6.3.3 Extended Discretization

With the addition of virtual points and the incorporation of irregular discretizations, it is necessary

to reformulate the discretized bending model. The bond pair coefficients at point x of a beam in

bending (eq. (6.1)) become

↵

i

=

c l(x) l(x+ ⇠
i

)

m

, c = EI , m =

nX

i=1

!(⇠
i

)⇠2
i

l(x+ ⇠
i

) ,
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with l(x) and l(x + ⇠
i

) representing the lengths of beam represented by the nodes at (x) and

(x+ ⇠
i

). Similarly, the plate coefficients from eq. (6.3) become

↵

i

=

c A(x)A(x+ ⇠
i

)

m

, c =

µ

(1 � ⌫)

h

3

12

, m =

nX

i=1

!(⇠
i

)⇠2
i

A(x+ ⇠
i

) ,

with A(x) and A(x+⇠
i

) representing the areas represented by the nodes at (x) and (x+⇠
i

). Note

that for both plate and beam, the value of ↵ now varies between bonds.

6.4 “Boundary” Conditions

Because peridynamic models result in long range forces, it is not sufficient to apply boundary

conditions to nodes on the relevant boundary; nodes near the boundary must be considered as well.

2�

Body B

Boundary Region

Figure 6.10: The boundary of a peridynamic model is a region of nonzero thickness

For the peridynamic beam we consider simple supports or rollers, and fixed or clamped sup-

ports. Simply-supported beams are easy to model because only displacement is constrained. To

add a roller support to the peridynamic beam, it suffices to constrain the movement of the nearest

peridynamic node in the appropriate degree(s) of freedom. Simulating a “clamped” end condition
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is a little less intuitive. The most basic way to simulate a clamped end is to extend the beam 2�, or

twice the horizon, into the clamp. The displacement of all of those nodes is set to zero, or whatever

value is appropriate for a displaced or rotated clamp. In classical mechanics, a clamped end can

be described with a symmetry condition, but the two are not peridynamically equivalent. Because

the classical beam is a local model, material at a clamp cannot “see” distant material, so there is

no way to distinguish between a beam end that is clamped and one that is bent symmetrically over

an appropriate sawhorse.

The loads we apply to the peridynamic beam include applied moments, point loads and dis-

tributed loads. Distributed forces may be applied as expected to nodes in the loaded region. Point

forces may often be applied directly to the nearest node, or to the nodes immediately surrounding

the point of application. Point moments must also be considered more carefully because the peri-

dynamic models in this work, like most peridynamic models, do not consider rotational degrees

of freedom for peridynamic nodes. Rather, material rotation is the result of the relative transla-

tional displacement of multiple nodes. It is therefore impossible to apply a moment to a single

peridynamic point. Instead, moments may be applied as force couples to the bonds attached to the

peridynamic node nearest the location of the desired moment. For example, if we want to apply

a moment M at point x, whose n neighboring points x

0
i

are connected to x in the undeformed

configuration by bonds ⇠
i

. For an evenly discretized beam, we may distribute the moments by

M

i

= M

!(⇠
i

)

nP
j=1

!(⇠
j

)

,

and apply them to the corresponding bonds by adding forces

F

i

= M

i

⇥ Yh⇠
i

i
|Yh⇠

i

i|2

to each point x
i

and subtracting them from the force at x.

Support configurations are similar for two-dimensional models. Each node along a simply-
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supported edge is constrained in one or more directions. As with the beam model, clamped edges

are implemented by extending the surface into the clamp. Line and pressure loads are treated

normally.

6.5 Numerical Solution Method

This project uses Trilinos, a collection of open software libraries, or packages, from Sandia Na-

tional Labs, including:

• Epetra and EpetraExt - provide efficient parallel data structures, particularly vectors and

sparse matrices

• Isorropia - provides load balancing, partitioning, and matrix coloring

• NOX - a collection of large-scale nonlinear system solver utilities

• PyTrilinos - a python interface providing Python wrappers for many Trilinos packages, and

offering compatibility between numpy.ndarrays and Epetra.MultiVectors [61]

The nature of discrete peridynamic models results in large numbers of parallelizable compu-

tations. Efficient parallelization is achieved using Epetra data structures for distributed variables.

Model force evaluations are coded in Python, making extensive use of the optimized routines in

the NumPy and SciPy packages operating on the distributed Epetra objects. To obtain quasistatic

solutions, problems are coded into NOX objects and solved using NOX nonlinear solvers. Pre-

liminary analysis was performed using a Newton Method solver on an iMac with a 3.1GHz Intel

Core i7 processor and 16GB RAM, using 1-4 cores. Later work also performed on Shamu, a High-

Performance Computing cluster at UTSA, and Stampede, a High-Performance Computing cluster

at UT Austin. The nature of the Trilinos packages and the structure of the code allow for more

extensive parallel computation without major code changes.

For all but the simplest loading conditions, analytical solutions to boundary condition problems

become complicated. As load conditions and material behavior become more complex, there are
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no analytical solutions. For comparison, equivalent models are created and analyzed in Abaqus

6.12 to verify simple cases.

66
DISTRIBUTION A: Distribution approved for public release.



6.6 Results

6.6.1 Straight Beam Results

The simplest test case for this model is a linear-elastic beam with a square profile. These models

represent beams that are 1cm thick and 1cm wide, with a bulk modulus k = 37.5GPa and Poisson’s

ratio ⌫ =

1
/3. Each is loaded transversely with a load of 0.0833N, except for fig. 6.13, which shows

a beam loaded with a moment of 0.0833N·m. In beams simulating inelastic behavior, the critical

strain of the material is set to "

c

= 0.001. The elastic cases are compared to analytical solutions

of the Euler beam equation with appropriate boundary conditions. Even a coarse discretization

successfully reproduces the shape of the elastically deformed, simply-supported beam shown in

fig. 6.11 deformed under uniform load. Other load types are also possible; figs. 6.12 and 6.13
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Figure 6.11: The uniform-load elastic beam is accurately modeled with few nodes

demonstrate simply-supported elastic beams with a point load and a point moment, respectively.

It is more difficult to accurately reproduce the behavior of a clamped-end beam. It is evident
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Figure 6.12: Simply Supported Beam with Point Load
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Figure 6.13: Simply Supported Beam with Point Moment at Center
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from figs. 6.14 and 6.15 that the clamped end constraint requires far more nodes and a smaller

horizon to reproduce the results of a classical elastic model. Figure 6.16 shows a cantilever beam

with one clamped end and one free end, deflecting under a uniformly distributed load.
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Figure 6.14: The clamped condition requires finer discretization

As an elastic-perfectly-plastic beam exceeds the elastic limit of its material, plastic zones begin

to grow on the top and bottom of the beam’s cross section. This behavior is mimicked by the plas-

ticity of the longest bond-pairs described in eq. (5.9), producing the results shown in fig. 6.17. To

evaluate plastic beam behavior, plastic beam models with identical material properties are created

and analyzed in Abaqus 6.12 to verify simple cases. To accurately capture this phenomenon and

model beam plasticity, a finer discretization is required.

A material that is plastically deformed does not return to its original state when unloaded. For

a beam in bending, the residual deformations can be seen in a beam that has been loaded beyond

the onset of plastic deformation and then unloaded. The Abaqus model retains slightly more than

1⁄10 of its loaded displacement after being completely unloaded. This result is observed in the
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Figure 6.15: The clamped condition requires a smaller horizon
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Figure 6.16: Uniformly Loaded Cantilever Beam
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Figure 6.17: The elastic perfectly-plastic beam requires finer discretization

bond-pair plasticity model, shown in figs. 6.18 and 6.19. Accurate residual deformation modeling

requires both a relatively small horizon and a fairly large number of nodes. While this makes for

a computationally expensive model in this case, it allows for implementation of more complex

plasticity models without additional expense; a plasticity model that includes softening is no more

effort to implement, and would result in damage fields that depend on the peridynamic horizon, not

on the density of the discretization. Because the peridynamic horizon is ideally a material property,

this has the effect of regularizing the solution. Implementing a strain-softening plasticity model in

a finite element beam would, by contrast, result in the localization of plasticity into one element

and depend strongly on the choice of discretization.

It is more difficult to verify the brittle material model described by eq. (5.10) because brittle

failure is unstable. When a crack begins, moment is transferred to other bond pairs, and failure

progresses until every pair of bonds surrounding a node are broken, creating a hinge at that node.

This is borne out by the results in fig. 6.20, in which “Nodal Health” represents the fraction of
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Figure 6.18: The need for fine discretization is even more apparent when representing residual
plastic deformation

bond-pairs about each node that have never exceeded their critical angle and therefore have not

failed.

Unlike a local model, partial failure is observed at nodes near the plastic hinge, as pairs of

bonds that straddle the hinge are broken. This is an important feature of peridynamics; as in the

plastic beam, the damaged region of the brittle beam depends on the peridynamic horizon rather

than on the density of the discretization. In a finite element model, damage will occur between

elements or within a single element. Either way, mesh refinement will eventually result in damage

localization to an infinitely small damage region.
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Figure 6.19: Accurately modeling residual plastic deformation also requires a small horizon
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Figure 6.20: A brittle beam with prescribed center displacement

74
DISTRIBUTION A: Distribution approved for public release.



6.6.2 Flat Plate Results

The simplest test case for the 2D model is a linear-elastic 1m by 1m plate that is simply-supported

on all 4 sides with a uniform transverse pressure load on the entire surface between the supports.

The plates in this section have a shear modulus k = 37.5Gpa, and unless otherwise noted, a Pois-

son’s ratio of ⌫ =

1
/3. The elastic plates are all loaded with a total transverse force of 937.5N. As

expected from an energy-equivalent model, the slice along the plate’s centerline shown in fig. 6.21

demonstrates good agreement between the static deflection predicted by the bond-pair model and

that of classical linear elasticity as the horizon length shrinks. This convergence only continues to a

minimum horizon, below which the discretized equation of motion (eq. (6.2)) ceases to accurately

approximate the continuous integral formulation (eqs. (4.1) and (5.1)). The minimum horizon size

depends on the discretization; it appears that three times the node spacing is sufficient, but that a

horizon that is only twice the node spacing is insufficient. The difference is evident in fig. 6.22,

which also shows that results are insensitive to fineness of discretization once the minimum hori-

zon criterion is met. Accurate results require a denser discretization than is the case for the elastic

beams from previous work. Figure 6.23 illustrates the model converging to the analytical solution

as the discretization is made finer and the horizon shrinks.

The test case for the hybrid model is a similar simply-supported square plate with an additional

in-plane tension load along two opposing sides. An analytical solution for this combination of

uniform transverse pressure and in-plane edge tension can be found in Timoshenko’s book [74].

As is mechanically intuitive, increasing in-plane tension results in decreasing transverse displace-

ment, while the opposite is true for compressive edge loading. Normalized to the the maximum

displacement of a transversely-loaded plate with no in-plane edge loads, the results in fig. 6.24

show that the hybrid model does a good job of simulating the impact of in-plane tension on max-

imum transverse deflection. The bond-multiple plate model is motivated by the desire to extend

the bending model to an arbitrary Poisson’s ratio, so the obvious test for this model is the same

as for the bond-pair model. When compared to analytical predictions, fig. 6.25 demonstrates the
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Figure 6.21: The Bond-Pair Model Converges on Accurate Plate Deflection with Smaller Horizons

bond-multiple model’s ability to simulate plates with Poisson’s ratios that depart significantly from

the bond-pair limitation of ⌫ =

1
/3.

Unlike the brittle beam, failure in a brittle plate need not progress unstably. To demonstrate

the behavior of this model, a controlled-displacement double-torsion fracture test was simulated

with the bond-pair model using a critical strain "

c

= 0.001. A good review of the double-torsion

test is available in [63]. Figure 6.26 shows the setup of a double torsion fracture test. This test

is particularly useful because it results in a bending crack whose growth is not unstable. The two

sides of the cracked plate act as torsion springs; as the crack grows longer, the torsion springs

grow longer as well, and correspondingly softer. The overall result is that, even though the plate’s

resistance to bending decreases as the crack grows, growth is stable until the crack nears the far

side of the plate. The simple qualitative results are shown in fig. 6.27, colored by the fraction of

failed bond pairs around each node. For each successive displacement load, the stable progression

of the damaged region extends further into the plate. The relationship between load displacement
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Figure 6.22: Horizon Must Include Sufficient Nodes

and crack length is consistent with a plane-stress mode I fracture toughness around 17GPa
p

m. As

with the brittle beam, the region within one horizon of the crack shows partial damage.

In the double-torsion plate, the crack is expected to progress straight across the plate. A more

interesting failure pattern can be found if the displacement is applied to only one of the two sides

of the pre-crack. In a “single torsion” cracked plate, the crack path is expected to curve, and this

result can be seen in fig. 6.28.
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Figure 6.23: The Bond-Pair Model Converges on Accurate Plate Deflection with Finer Discretiza-
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Figure 6.24: The Combined Model Accurately Captures the Influence of In-Plane Tension
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Figure 6.25: The Extended Model Matches for Arbitrary Poisson’s Ratio
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Figure 6.26: Simple Double Torsion Setup
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Figure 6.27: Crack Progression in Double Torsion Brittle Plate
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Figure 6.28: Crack Progression in Single Torsion Brittle Plate
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6.6.3 Irregular Discretization Results

While it is simple to discretize the shapes examined thus far so that bonds pair up nicely, that is

tougher to do for most shapes we are interested in analyzing. To combine the analytical simplicity

of the previous shapes with a demonstration of the ability to handle irregular shapes, we discretize

simple shapes in an irregular fashion. The first is a return to the simply-supported beam under

uniform load. Figure 6.29 shows that the irregularly-discretized beam has the same deflection

under uniform load as the regular discretization.
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Figure 6.29: Irregular Beam

An example of a regularly-discretized plate is shown in fig. 6.30, while an irregularly dis-

cretized plate is shown in fig. 6.31. To use this plate in a peridynamic simulation, we reduce each

element to a single node at the element’s centroid with volume equal to the volume of the element.
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Figure 6.30: The regular plate discretization allows pairing of opposite bonds between nodes

Figure 6.31: The irregular plate discretization requires virtual points to form bond pairs
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Figure 6.32: Virtual Points Allow for Irregular Discretizations
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6.6.4 Curved Surface Results

To test the virtual point method for curved surfaces, we start with the simple case illustrated in

fig. 6.33 of a ring in bending with a beam cross section. Like the straight beam, the curved beam

is 0.01m in both width and thickness, with shear modulus k = 37.5Gpa and Poisson’s ratio ⌫ =

1
/3. This 1m-diameter ring is subjected to a point load of 0.0833N. A real-life example of this

type of problem would be a proving ring used for force measurements. The plots in figs. 6.34

F

ẑ

x̂

Figure 6.33: Proving Ring Setup

and 6.35 show that convergence to the classical elastic solution is more a function of the shrinking

horizon size than of denser discretization, though the discretization must be dense enough to allow

sufficient nodes in each neighborhood.

Similarly, the use of virtual points in the simulation of curved plates and shells can be examined

by starting with the ring model depicted in fig. 6.36. This ring is 1m in diameter, 0.01m thick, and

0.25m wide. The ring is loaded in the same manner as the beam-based ring, but with a line load

with total magnitude 937.5N. In cross-section, the ring looks like fig. 6.33.

Figure 6.37 demonstrates that, as with the curved beam, the curved shell requires a dense

discretization to model. This is mostly as a consequence of requiring a small horizon. Surfaces

with less curvature are less constrained.
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Figure 6.34: A Beam-based Proving Ring in Varying Discretizations
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Figure 6.35: Horizon Convergence in the Beam-based Proving Ring
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Figure 6.36: Discretization of a 3D Proving Ring
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Figure 6.37: Plate-based Proving Ring
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Chapter 7: CONCLUSION

This work develops what we believe to be the first state-based peridynamic thin feature models.

These models allow for the simulation of bending in peridynamic beams, plates, and shells. They

are verified by comparing their strain energies to the strain energy of classical models for small

homogenous deformations, which are matched for both Euler-Bernoulli beams and for Kirchhoff-

Love plates as the peridynamic horizon approaches zero. In addition to matching linear elas-

tic models for these structures, it has been shown that the peridynamic models also match with

Eringen-style gradient elasticity as the horizon decreases.

The bond-pair version of the bending model resists only bending deformation and is limited

to plates with Poisson’s ratios ⌫ =

1
/3. To simulate loading incorporating forces both in-plane

and transverse to the beam or plate, the pure bending model was combined with a conventional

peridynamic model for in-plane deformation. The result is a hybrid bending-extension model.

The Poisson’s ratio limitation was overcome by decomposing bending deformation into isotropic

and deviatoric components, allowing for a bond-multiple isotropic bending correction to the de-

formation energy. With this correction, the deformation energy was shown to match that of a

Kirchhoff-Love plate for any (valid) Poisson’s ratio.

To further extend the utility of the model, a reformulation was developed to gracefully include

curved and irregularly discretized areas. By adding virtual points at locations where no nodes is

present, the bond-pair model can be applied to regions where bonds are not initially organized

into equal and opposite pairs. This includes curved surfaces, where a virtual point may be added

slightly above or below the surface, as well as irregularly discretized regions in which virtual points

may be added between peridynamic nodes.

Code was written to evaluate both beam and plate models for a variety of support configu-

rations, load configurations, and materials. Although many problems of interest result in purely

transverse deformation, both mathematical models and computer code are fully 3D. The nature

of peridynamic models results in large but easily parallelizable problems. The code was writ-
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ten with this in mind, and scales easily to large problems on multiple machines. Simulations

run with the developed models provide results in agreement with conventional methods for sev-

eral support configurations, including simply-supported, clamped, and free end conditions. Good

agreement was also reached for applied displacements, moments, and both point and distributed

loading conditions. The proposed damage model successfully reproduces the impact of nonlinear

elasticity on deformation of a rectangular beam, and the framework is laid to allow application

of the same model to a variety of beam cross sections. Brittle fracture results for both beam and

plate simulations are also consistent with expectation. A single-torsion plate demonstrates the

peridynamic advantages of natural crack path development without the need to predict direction of

propagation. The hybrid bending-extension model resists transverse, in-plane, and combined de-

formation, allowing it to successfully reproduce the stiffening effect of adding in-plane tension to

a transversely-loaded plate. With the bond-multiple correction, the extended model demonstrated

the effect of varying Poisson’s ratio on plate bending. Because it was inspired by a similar de-

composition used in extension models, there same procedure can be used for combined in-plane

and transverse deformations. Implementation of the virtual point extension greatly increases the

practical utility of the model, a fact demonstrated by accurate simulations of the displacements of

irregularly discretized plates and beams. Finally, the addition of virtual points allows application

to curved features, as demonstrated by successful simulation of beam and plate based rings.

The state-based nature of these models allows them to resist bending as a basic deformation

mode, in a way that is fundamentally different from previous peridynamic models, both 3D solid

and thin-feature. While the examples in this work focus on conventional elastic and inelastic

behavior, treating bending as a basic deformation opens the possibility of modeling thin features

whose resistance to bending is not simply a function of stresses that vary through the thickness

to produce a moment, and suggests a wide variety of possible applications: Graphene sheets are

only one atom thick, so their bending behavior cannot be the result of through-thickness variation

in stress. Some biological membranes resist isotropic bending but not deviatoric stresses. Highly-

structured metamaterials may also have bending properties that cannot be derived solely from bulk
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solid properties.

Peridynamic modeling is a technique that is swiftly growing in popularity, especially among

those concerned with the propagation of material failure. The bending behavior of thin features is

a critical part of many engineering analyses that has been largely out of reach for reasonably-sized

peridynamic models. These peridynamic bending models extend the domain of problems to which

peridynamic modeling can be applied.

There are many directions in which the models developed in this work can be improved upon.

While the results presented here are both illustrative and persuasive, they do not represent a mathe-

matically rigorous demonstration of the convergence properties of the bending models, and future

work focusing specifically on discretization and convergence issues would be valuable. Both the

plastic and brittle material models developed in this work are proofs of concepts, demonstrating the

capabilities of peridynamics and the new bending models. It will be necessary to develop a thermo-

dynamically consistent failure model before using this model to make predictions regarding failure

propagation, especially when rapid progression is expected. Ideally, the material parameters of

such a model could be determined from existing datasets and material parameters.

Because directional composites are a popular material choice for thin features, it would be

worthwhile to extend the bending models to simulate non-isotropic plates. Other useful avenues

of inquiry include combining these 2D models with peridynamic solid models to analyze features

comprised of both thick and thin parts.
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Appendix A: FRÉCHET DERIVATIVE

A.1 Definition

The derivative of a function of a state is defined by Silling in [66] as follows:

Let  be a function of a state,  (·) : A
m

! L
n

. Suppose there exists a state-valued

function denoted r 2 A
m+n

such that for any A 2 A
m

and any �A 2 A
m

,

 (A+�A) =  (A) + r (A) •�A+ o(||�A||). (A.1)

Then  is said to be differentiable and r is called the Frechet derivative of  .

This is a fairly straightforward way of defining a derivative with respect to a state. Because the

force vector-state and deformation vector-state are work conjugate, the force vector-state can be

determined by taking the Fréchet derivative of energy with respect to the deformation vector-state.

A.2 Bond-Pair Force

For the bond-pair model, we derive the bond force function from the bond-pair energy function

Th⇠i = rw
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To determine the ˆ

✓ direction vector, we must construct a vector that is normal to Yh⇠i and that

is in the plane containing both Yh⇠i and Yh�⇠i. The cross product of Yh⇠i and Yh�⇠i is

a vector normal to that plane, so any vector normal to that cross product will be in the correct

plane. Therefore, the vector Yh⇠i ⇥ [Yh⇠i ⇥ Yh�⇠i] is both normal to Yh⇠i and is in the plane

containing both Yh⇠i and Yh�⇠i. Normalizing gives us the ˆ

✓ direction vector:

ˆ

✓

⇣
Yh⇠i,Yh�⇠i
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h
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i
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⇣
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⇣
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⌘⌘

We combine all of these to get the expression for bond force found in eq. (5.1).

Th⇠i = !(⇠)
�↵

|Yh⇠i|
Yh⇠i
|Yh⇠i|

⇥
"
Yh⇠i
|Yh⇠i|

⇥ Yh�⇠i
|Yh�⇠i|

#

A.3 Isotropic Bending Correction

To derive the bending “pressure” force, we start with the isotropic energy discrepancy

W
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Because ¯ is itself a vector-state, we will need to begin with the change in ¯ with respect to Y and

carry the result through to find the change in W

?.
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This demonstrates the bond-length dependent “pressure” applied to each point in the neighborhood

of a point with average curvature ¯.
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Appendix B: NOTATION

Peridynamics is a new field, and different authors use a variety of notations to represent a variety

of concepts. Although chosen to be as consistent as possible with other authors, the following

notation is therefore not portable to other works.

Table B.1: Peridynamic Notation

Notation Meaning

A area

b beam width

b body force vector

c bond stiffness

D plate flexural rigidity

E Young’s modulus

e bond stretch

e

i isotropic portion of bond stretch

e

d deviatoric portion of bond stretch

F applied force

F deformation gradient tensor

¯

F approximated deformation gradient tensor

f force vector

f

iso isotropic bending “pressure”

H neighborhood

I second moment of area

K Eringen’s nonlocal modulus

k bulk modulus

K shape tensor
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Table B.1: Continued

Notation Meaning

l beam length represented by node (1D)

M moment

m peridynamic normalization constant

O order notation

p pressure

p distributed pressure load (2D)

P first Piola-Kirchhoff stress tensor

p,q, r deformed bond vectors

q distributed load (1D)

s bond stretch

t thickness

t Eringen nonlocal stress

t1D 1D Eringen nonlocal stress

T force vector state

T

? correction force vector state

u displacement vector

V shear force

v displacement in ŷ direction

w displacement in ẑ direction

w bond energy, bond-pair energy

W strain or deformation energy density

W

? energy discrepancy

x̂, ŷ, ẑ coordinate vectors

x,q undeformed location vectors
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Table B.1: Continued

Notation Meaning

y deformed location vector

Y deformation vector state

↵ peridynamic bending stiffness

↵

iso isotropic bending stiffness

� horizon

�x distance between nodes in regular discretization

✏ uniaxial strain

✏ strain tensor

✏

c

critical strain

✏

d deviatoric strain

✓ bond-pair angle

✓

c

critical angle

✓3D, ✓2D dilation

 beam curvature

̄ nonlocal curvature

¯ vector isotropic curvature



x

= 

xx

= 1 =
@

2
w

@x

2

Plate Curvatures


y

= 

yy

= 2 =
@

2
w

@y

2



xy

= 3 =
@

2
w

@x@y

µ shear modulus

⌫ Poisson’s ratio

⇠, ⇣ undeformed bond vectors

⇠
i

i-th of n vectors ⇠1 to ⇠
n

⇠

i

i-th component of vector ⇠
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Table B.1: Continued

Notation Meaning

⇠ magnitude of vector ⇠

⇢ density

⇢ radius of curvature

�1D 1D local stress

� Cauchy stress tensor

(⌧ l) scale parameter

� beam deflection angle

� bond orientation angle

⌦ undeformed body

⌦ classical strain energy density function

! weight function
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